

Overview of the safety and licensing aspects of future fusion power plants

Paul W. Humrickhouse US BPO Webinar January 12, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Overview

- Origin and magnitude of radioactive material production from fusion
- Aspects of radioactive material confinement
 - Decay heat management
- Regulatory limits on radiation dose
- Mobilizable radionuclides: activation products and tritium
- Release mechanisms: coolants, dust, permeation
- Characteristics of fusion waste; regulation

Utility perspectives on fusion

	US Utility Requirements (1994)	Example Attributes
	Cost advantage over other available options	High thermal conversion efficiency and component efficiencies, compact (high beta), low recirculating power (e.g. high I_{BS}), high availability, low cost of fabrication.
╞	Eased licensing process	Plant standardization, low activation materials , low energy release potential, low tritium inventory .
	No need for evacuation plan	Low activation materials, low energy release potential, passive safety, reliable containment, low tritium inventory
	Produce no high-level waste	Materials choices, waste management
	Reliable, available, and stable	Ample design margins, uncomplicated designs, rapid maintenance
	No local or global atmospheric impact	Low CO ₂ emissions, low tritium emissions
ŗ	Fuel cycle is closed and on-site, High fuel availability	Fuel cycle is closed and on-site, High fuel availability
	Capable of partial load operation, Available in a range of unit sizes	500 MW – 1 GW

M. Tillack, 2014 TOFE, based on J. Kaslow et al., *Journal of Fusion Energy* **13** (2/3) 1994.

Safety/Environmental Issues

3

Radioactive materials from fusion

 Fusion of deuterium and tritium is the easiest reaction to achieve, but every reaction produces a high energy neutron and these carry 80% of the total fusion energy

 $D + T \rightarrow {}^{4}He (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$

- Tritium is itself radioactive, and its management has some unique challenges
- Radioactive materials will be produced by neutron activation of structures, coolants, etc. surrounding the plasma
- Other fusion reactions are ostensibly aneutronic:

 $D + {}^{3}He \rightarrow {}^{4}He (3.6 \text{ MeV}) + H (14.7 \text{ MeV})$ $H + {}^{11}B \rightarrow 3 {}^{4}He (8.7 \text{ MeV})$

- Side reactions (D+D, ⁴He+¹¹B) release some of the power in neutrons
- Substantially reduced radiological hazards relative to D-T, but harder to achieve
- The rest of this talk is focused on issues related to D-T fusion

Neutron activation

- The D-T fusion reaction produces neutrons: $D + T \rightarrow {}^{4}He (3.5 \text{ MeV}) + n (14.1 \text{ MeV})$
- The blanket re-produces tritium via reactions with lithium: $n + {}^{6}Li \rightarrow {}^{4}He + T + 4.8 \text{ MeV}$ $n + {}^{7}Li \rightarrow {}^{4}He + T + n' - 2.5 \text{ MeV}$
- So, the "products" of fusion are only stable helium isotopes:

− D + ${}^{6}\text{Li} \rightarrow 2 {}^{4}\text{He}$

- Contrast this with fission, which produces a distribution of radioactive materials (some very long-lived) according to the yield curve:
- But, unfortunately the D-T fusion fuel cycle is not entirely free of radioactive materials and waste
- Any other elements present in breeding or structural materials can be transmuted by incident neutrons, with volumetric activation rate:
- $A = N\sigma\phi$ N = number density, σ = cross section, ϕ = neutron flux
- Many of the resultant activation products are radioactive, and therefore a hazard to human health

U-235 Neutron-induced Fission Yields

J. Shimwell, Fusion Engineering and Design 98-99 (2015) 1868-1871.

Some basics on radiation dose

- As radiation passes through the body, the imparted energy per unit mass is the absorbed dose, D:
 - 1 rad = 0.01 J/kg = 0.01 Gray (Gy)
- The dose equivalent, *H*, is modified by a weighting factor, Q:
 - $H = D \times Q$
 - Units of H: 1 rem = 0.01 sievert (Sv)
- The quality factor accounts for differing biological effect depending on the linear energy transfer due to collisions (energy/length), and increases with mass and charge of the particle

Type of radiation	Q
X-ray, gamma, or beta radiation	1
Alpha particles, multiple-charged particles, fission fragments and heavy particles of unknown charge	20
Neutrons of unknown energy	10
High-energy protons	10

- Radiation damages cells, and high doses (> 50 rem) are linked to various cancers
- There are no data to establish a firm link between cancer and doses < 10 rem
- A lethal dose is ~ 400 rem
- The average person is exposed to ~0.62 rem/year from natural and medical sources:

https://www.nrc.gov/docs/ML0333/ML033390088.pdf

How much activated material?

- Because the radioactive byproducts of fusion come entirely from activation, this depends on what materials comprise the reactor
- But, it's not trivial
- Converted to (ingestion) dose and normalized to the operating power, it's more than from a fission reactor at short (10+ year) times
- Use of low-activation materials can make it dramatically lower at longer times

Radioactive Material Concerns

- Significant radionuclide inventories imply a need to manage:
- Radiation Exposure
 - Radiation exposures can be avoided by adequately confining mobilizable inventories of radioactive materials
- Decay Heat
 - Radioactive decay of activation products generates heat even after the reactor is shut down; this has to be managed safely
- Radioactive Waste
 - Use of low-activation structural materials and coolants can avoid creation of long-lived waste

Confinement of Radioactive Material

- Fusion reactors do not experience *reactivity* transients that can occur in a fission reactor
- But they do have some large stored energies; these need to be dissipated safely in off-normal scenarios (avoid rapid/local deposition)
- Challenges to confinement of radioactive material include:
 - Ensuring decay heat removal when required
 - Providing rapid controlled reduction in plasma energy when required
 - Mitigation of disruptions and runaway electrons critical to avoid loss of coolant in tokamaks
 - Controlling coolant energy (e.g., pressurized water, cryogens)
 - Controlling chemical energy sources
 - E.g., air or steam reactions with lithium or beryllium
 - Controlling magnetic energy (e.g., stored in toroidal and poloidal field coils)

Disruptions in JET

E.M. Hollmann, JNM 415 (2011) \$27-\$34

Decay Heat generation in the elements

1 H	DH<10 ⁻⁴ 10 ⁻⁴ <dh<10<sup>-310⁻³<dh<10<sup>-210⁻²<dh<10<sup>-1 10⁻¹<dh<10<sup>0 10⁰<dh<10<sup>1</dh<10<sup></dh<10<sup></dh<10<sup></dh<10<sup></dh<10<sup>													2 He			
3 L i	4 kW/kg 5 6 7 8 9											10					
11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										18 0r						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34 34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Çu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	no	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	stable isotopes	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-T	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83			
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТΙ	Pb	Bi			
			58	59	60	20	62	63	64	65	66	67	68	69	70	71_	
			Ce	Pr	Nd	stable isotopes	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	

Based on C. B. A. Forty, et al., Handbook of Fusion Activation Data; Part 1. Elements Hydrogen to Zirconium, AEA FUS 180, May, 1992. Assumes 4.15 MW/m² for 25 years

CAK RIDGE National Laboratory

10

Low-activation materials

• Most future reactor designs plan to use a structural material that is a modified version of grade 91 steel, iron alloyed with:

Cr	Мо	V	Nb	Si	С
8.0-9.5	0.85-1.05	0.18-0.25	0.06-0.1	0.2-0.5	0.08-0.12

- Activation of Molybdenum and Niobium creates long-lived waste:
- ⁹⁹Tc: $t_{1/2} = 211,100 \text{ y}, {}^{93}\text{Mo}: t_{1/2} = 4,000 \text{ y}, {}^{94}\text{Nb}: t_{1/2} = 20,300 \text{ y}$
- Molybdenum replaced with tungsten, niobium replaced with tantalum¹ to create Reduced Activation Ferritic/Martensitic (RAFM) steels, e.g.:
 - EUROFER-97 (Fe-9Cr-1W-0.2V-0.12Ta), developed in Europe
 - F82H (Fe-8Cr-2W-0.2V-0.04Ta), developed in Japan
 - Similar alloys developed in Korea, China
- Other low-activation materials (e.g. V-4Cr-4Ti², SiC³) are not yet sufficiently developed for fusion applications

¹H. Tanigawa et al., *Nuclear Fusion* **57** (2017) 092004.

²R. Kurtz et al., *Journal of Nuclear Materials* **283-287** (2000) 70-78.

³L. Snead et al., *Journal of Nuclear Materials* **417** (2011) 330-339.

Decay heat in fission reactors

- Decay heat comes principally from fission products, and so scales with reactor power
 - ~7% at shutdown

CAK RIDGE

National Laboratory

- Its presence after full shut down requires emergency cooling
- Inability to remove it in offnormal scenarios ultimately resulted in core melt at Three Mile Island and Fukushima

10 CFR 50, Appendix K

Figure 1. Appendix K Decay Heat Comparison

Proposed vs. Current Models

Decay Heat in Fusion Reactors

- The amount of decay heat depends in principle on many choices:
 - Structural Materials
 - Blanket Concepts
 - Liquids: PbLi (Dual-coolant lead-lithium), FLiBe
 - Solids: Li_2TiO_3 , Li_4SiO_4 , Li_2ZrO_3 , $LiAIO_2$, with $Be_{12}Ti$ Multiplier
 - Fusion Power
 - Device size
 - Etc.
- To assess the amount decay heat expected from a D-T fusion device, we have conducted a series of neutronic and activation analyses looking at the influence of these design choices
- Models are parametrically constructed using Cubit python API
- Neutronic analysis with DAG-MCNP 6.2 with FENDL-3.2b nuclear data
- Activation analysis with FISPACT-II and TENDL-2017 nuclear data

Structural Materials: T. Muroga, 3/29/2022

- Many possibilities considered in fusion program history...
- Activation (shortterm decay heat or long-term waste) was a significant driver in eliminating many from consideration

14

Model

- Base case: FNSF, $R_0 = 4.8m$, $P_{fus} = 518$ MW
- First Wall: 34% RAFM steel, 66% He _____
 - 2mm W armor
- Blankets: Dual-coolant PbLi (DCLL)
 - 7.5% RAFM, 15% He, 3.9% SiC, balance PbLi
- Vertical Stabilizing Shell: 100% W
- Back wall: 80% RAFM, 20% He 💳
- Structural Ring

CAK RIDGE National Laboratory

- IB: 28% RAFM, 20% He 52% WC
- OB/top/bottom: 28% RAFM, 20% He, 52% Borated RAFM
- Divertors: 41% W-1.1TiC, 12% RAFM, 47% He

Two year operation (irradiation) assumed

Baseline (FNSF/DCLL) results

- Total decay heat is 7.4 MW 1 s after shutdown (~1.5% of full power)
- About half of this is from the blankets
- 20-25% is from tungsten structures: FW armor, divertors, vertical stabilizing shell, and IB shielding (WC)
 - This amount of decay heat is common to all subsequent analyses; these materials have not been varied

Decay heat dependence on structural material

• FNSF design with RAFM replaced by different structural materials:

Decay heat dependence on structural material

• Blankets/FW/BW/OB SR only:

19

Decay heat dependence on blanket concept

20

FNSF with PbLi replaced with other breeder/multiplier materials:

Decay heat dependence on fusion power

• For a given geometry and materials, decay heat scales linearly with fusion power, i.e. the decay heat fraction is the same:

Decay heat dependence on reactor size (major radius)

- For a given geometry, fusion power, and materials, total decay heat is nearly independent of the reactor size
 - Surface area is decreased, but flux increases proportionally

Decay heat density

- Component volumes decrease as major radius decreases
- This implies larger decay heat densities in compact devices
- Armor decay heat density is high, but this component is thin (2mm)
- Combinations of high activation materials can result in similar decay heat densities to advanced fission reactor concepts like HTGR

CAK RIDGE

National Laboratory

Decay Heat takeaways

- D-T fusion reactors will produce a non-trivial amount of decay heat; depending on material choices, this might be ~1.5-3.5% of the fusion power just after shutdown
- It remains lower than a comparable fission reactor *if* low activation materials are used
 - Decay heat density is lower than fission
- Total decay heat in a tokamak scales linearly with fusion power and is independent of reactor size (major radius)
 - More compact devices will increase decay heat density, and decrease surface area available to remove it
- Passive decay heat removal is essential to the attractiveness of fusion as an energy source, and should be a primary consideration in reactor design and material selection

How is radioactive material mobilized?

- While melting of structures should be avoidable in a fusion reactor accident, radioactive materials can be mobilized in a few other ways
- Plasma-surface interactions create dust that will accumulate inside the vacuum vessel; this dust can potentially be transported outside the vacuum vessel in the event of a breach
- Coolant leaks can transport radioactive material outside confinement boundaries, e.g. dissolved tritium or activation products in the coolant
 - Most breeder materials are relatively low-activation compared to structural materials: Li, F, Be, O, Si (less so Ti) have primarily very short-lived activation products or don't activate significantly
 - Pb activation products in PbLi breeders are probably the most significant concern
 - Isotopes of particular concern include ²⁰³Hg and ²¹⁰Po:

 ${}^{206}Pb \xrightarrow{n,\alpha} {}^{203}Hg \qquad {}^{208}Pb \xrightarrow{n,\gamma} {}^{209}Pb \xrightarrow{\beta-} {}^{209}Bi \xrightarrow{n,\gamma} {}^{210}Bi \xrightarrow{\beta-} {}^{210}Po$

- ²¹⁰Po decays by emission of a 5.4 MeV alpha particle and is extremely radiotoxic
- It is also rather volatile, and evaporates from free surfaces in the form of PbPo
- Chemical reactions can also mobilize material in the form of aerosols
- Tritium is highly mobile, and can permeate through solid structures

Tungsten dust from ASDEX-Upgrade

NRC licensing status

- The US Nuclear Regulatory Commission has authority over commercial fusion devices in the US
- They are presently evaluating whether to license fusion reactors under 10 CFR parts 20 and 30 ("byproduct material," accelerators) or 10 CFR part 50/53 ("utilization facility," fission reactors); white paper¹ released in September
- Presented to the Advisory Committee on Reactor Safeguards (ACRS) in October; their response²:
 - Endorsed part 30 for devices with < 10g tritium and < 0.01 MW/m² (< 0.1 dpa)
 - But criticized this approach generally, citing fission-like decay heat and other hazards, and noting factual inaccuracies in white paper
 - Hybrid approach was recommended (decide whether a given design fits under 20/30 or 53 depending on magnitude of hazards)

26

¹https://www.nrc.gov/docs/ML2225/ML22252A192.pdf ²https://www.nrc.gov/docs/ML2230/ML22306A260.pdf

Safety requires that tritium releases must be kept low

- DOE standard¹ limits on routine airborne and liquid releases:
 - National Emission Standards for Hazardous Air Pollutants (40 CFR 61): 0.1 mSv/yr (10 mrem/yr)
 - National Primary Drinking Water Regulations (40 CFR 141.16): 0.04 mSv/yr (4 mrem/yr)
 - All sources (10 CFR 20.1301): 1 mSv/yr (100 mrem/yr)

	Fusion radiological release	Regulatory limit
	requirement	(evaluation guideline)
Normal and anticipated operational occurrences	0.1 mSv/yr (10 mrem/yr)	1 mSv/yr (100 mrem/yr)
Off-normal conditions (per	10 mSv (1 rem) (No	250 mSv (25 rem)
event)	public evacuation)	

TABLE 1. Requirements for protection of the public from exposure to radiation^a

- Adherence to off-normal limits needs to be demonstrated by accident analysis
- Tritium releases may challenge normal/AOO limits; for "generic site" considered for FNSF analysis, 0.1 mSv/yr (10 mrem/yr) -> 0.29 g T/yr
 - 0.29 g T/yr = 10^{-5} FNSF fusion/breeding rate

CAK RIDGE National Laboratory

27

¹DOE-STD-6002-96, "Safety of Magnetic Fusion Facilities: Requirements" <u>https://www.standards.doe.gov/standards-documents/6000/6002-astd-1996</u> ²P. W. Humrickhouse, Fus. Eng. Des. **135** (2018) 302-313; <u>https://doi.org/10.1016/j.fusengdes.2017.04.099</u> US BPO, 1/12/2023

Quantities of Tritium in Fusion Devices

- Fusion reactors consume tritium at rate of 152 g/GW-d, and must breed it the same rate or higher
- This is about $10^{3}x$ the rate of production in a MSR, $10^{6}x$ of a LWR
- The plasma burns only a small fraction each pass, so fueling rate must be 20-200x larger
- Future reactors will produce tritium in a breeding blanket at the same rate it is consumed or higher to fuel other devices
- Safety concerns include:
 - Permeation of tritium through high temperature blanket and HX structures (pipes, vessel walls, etc.)
 - Large tritium inventories in components

Tritium flows and loss paths

Safety analyses seek to quantify the rate of tritium loss through all systems, in both normal and off-normal operating scenarios

The Tritium Migration and Permeation (TMAP) code was originally developed at INL for this purpose

Diffusion/Permeation

 P_2

 C_2

 J_{D}

Х

- The fundamental driver of tritium migration is its ability to diffuse through metals, with permeation flux $J = -D(\partial C/\partial x)$
- At moderate to high pressures, the partial pressure and solid concentration at gas/solid interfaces are related by Sieverts' Law: $C_i = K_S \sqrt{P_i}$
- The resultant "permeation" flux is given by

$$J = \frac{DK_S(C_1 - C_2)}{x}$$

• The constant of proportionality $\Phi = DK_S$ is the permeability

M. Shimada in Comprehensive Nuclear Materials https://doi.org/10.1016/B978-0-12-803581-8.11754-0

 P_1

 C_1

Trapping

CAK RIDGE National Laboratory

31

- Tritium is subject to *trapping* at defect sites in structural materials
- The density of trap sites increases with radiation damage; irradiation increases the density of higher energy traps

M. Shimada, Phys. Scr. T. **T145** (2011) 014051. https://doi.org/10.1088/0031-8949/2011/T145/014051

Tritium transport analysis of the FNSF

- The Fusion Nuclear Science Facility (FNSF) is a 518 MW US design featuring a DCLL blanket
- Tritium permeation and the influence of design features was systematically analyzed
- The base design had tritium permeation losses of **6.18 g/yr**, larger than **0.29 g/yr** target
 - Partly a result of conservative parameter choices (e.g. lowest measured T solubility in PbLi)
 - More optimistic choices (within measured ranges) give as low as 0.05 g/yr
 - Driven primarily by PbLi pipe losses
- Quantitative effect of design features systematically evaluated...

Tritium transport analysis of the FNSF (cont'd)

- Significant design features and impacts:
 - DCLL Blanket
 - High flow rates reduce residence times
 - SiC flow channel inserts act as a permeation barrier
 - High efficiency (95%) vacuum permeator for T extraction from PbLi
 - A relatively compact design based on tantalum permeator tubes (764,15m long) provided, but needs engineering demonstration
 - Permeation increases significantly as efficiency is reduced
 - Concentric hot/cold leg piping
 - Single most effective mitigation!
 - Permeation increases to 115 g/yr without it

Permeation barrier coatings

- The FNSF design did not take credit for any permeation barriers
- Ceramic (e.g. Al₂O₃, Er₂O₃) coatings have shown significant promise in laboratory settings, but significantly degraded performance in reactor environments
- The reasons are not completely understood, but may result from a combination of:
 - Degredation of the coating (e.g. cracks)¹
 - Radiation-enhanced diffusion²

CAK RIDGE

- Radiation damage to microstructure³
- Remains an ongoing area of research

Irradiation testing of tritium/hydrogen barriers

Test	Barrier system ^a	Effectiv PRF		
LIBRETTO-2	Alum/316L	<80		
LIBRETTO-3	316L/TiC	3		
	Al ₂ O ₃ /316L	3		
	316L/alum/Al ₂ O ₃	15		
TREXMAN	Cr ₂ O ₃ /SS316	10		
	SS316/Cr ₂ O ₃	100		
Loop-1	Alum/SS316/alum	150		
WC-1	Alum/SS316/alum	150		

G. W. Hollenberg, Fus. Eng. Des. 28 (1995) 190. https://doi.org/10.1016/0920-3796(95)90039-X

¹R. Causey, in Comprehensive Nuclear Materials, 2012.
 ²W. Luscher, J. Nucl. Mater. **437** (2013) 373.
 ³X.-D. Pan, Nucl. Fusion 61 (2021) 036004.

Guard pipes

- Permeation barriers may be effective in less demanding environments that target permeation loss paths, e.g. on the outside of ex-vessel piping
- Other engineered barriers may be effective here as well
- In the FNSF design, guard pipes swept with low pressure He significantly reduced permeation with no significant heat loss

He purge velocity (m/s)	Outer pipe temp (C)	Inner pipe temp (C)	Heat loss (W)	Tritium loss (g/y)
N/A	-	417	-	4.21
0.1	94	416	65	0.014
1.0	353	414	2,083	1.19
10.0	350	414	21,350	0.58

Sweep Gas	
Cold Leg	
Hot Leg	→
Cold Leg	▲
Sweep Gas	

Tritium Takeaways

- Tritium is highly mobile in high-temperature systems and this migration poses a significant safety & environmental issue for future fusion reactors
- Solution, diffusion, surface effects, mass transport, and trapping all play a role in tritium transport predictions
 - Parameter uncertainties are a significant hindrance to predictive models
 - Trapped inventories are uncertain
 - Integral test data needed for validation
- Permeation barriers are needed to help limit tritium permeation
 - Barriers could take many forms

Waste from Fusion

- The volume of radioactive material produced by a fusion reactor is large relative to a fission reactor
- But since radionuclides are produced by neutron activation rather than fission, reduced-activation materials
 can ensure waste is not long-lived
- High Level Waste (HLW):
 - Spent fuel and materials resulting from reprocessing of spent fuel
 - "Other highly radioactive materials that the Commission may determine require permanent isolation"
 - Requires deep geologic repository
- Low Level Waste (LLW): everything else, classified based on hazard:

Waste class	Definition	Disposal
Class A Segregated waste	Decays to acceptable levels during side occupancy	Segregated, minimum requirements
Class B Stable waste	Stabilized and decays to levels that do not pose a danger to public health and safety in 100 years	Covered to reduce surface radiation to a few percent of natural background
Class C Intruder waste	Does not decay to safe levels in 100 y. Decays to acceptable safe levels in 500 y $^{\rm a}$	Five meters below surface with natural or engineered barrier
Waste that does not meet Class C definition	Does not qualify for near-surface disposal. Proposed disposal methods are considered on a case-by-case basis	Geologic

Nuclear waste classification under 10 CFR 61 rules

^a 10 CFR 61 defines "acceptably safe levels" to mean that the inadvertent entry into the waste would result in a whole-body dose of less than 0.5 rem/y. Natural background radiation gives an average yearly dose of about 0.1 rem/y.

CAK RIDGE

37

Waste classification as per 10 CFR 61

- As with our safety analyses, the philosophy behind classification and disposal of LLW is based on quantitative limits on radiation dose to members of the public
- Class C waste disposed of in shallow land burial results in only "acceptably safe" doses (500 mrem/yr) in the following scenario:
 - "Institutional control" prevents any access to the site for 100 years
 - It is assumed to be "stable" (i.e. recognizable as radioactive waste) for 500 years
 - Maybe after 100 years, somebody starts to build a house on the site...
 - Construction workers will recognize radioactive waste as such and cease operations within 6 hours
 - After 500 years, it's no longer recognizable. The house is built (in 500 hours) and the inhabitants grow half of their food on site. They receive dose (<500 mrem/yr) from inhalation, ingestion, and direct exposure.

Specific Activity Limits

- Under the preceding scenario, one can calculate corresponding specific activity limits (SAL) for a given radioisotope
- The waste disposal rating (WDR) is the sum of the fractional contributions of each isotope to the overall limit; for Class C waste, WDR < 1

 $WDR = \sum_{i} \frac{a_i \left[Ci/m^3\right]}{SAL_i \left[Ci/m^3\right]}$

- NRC (in 10 CFR 61) only specified SALs for a handful of isotopes though
- In the late 1980s, Fetter¹ employed a similar logic to determine SALs for a comprehensive set of potential fusion activation products
- Whether these or other limits are to be adopted as regulation has not been addressed

10 CFR 61 Class C Specific Activity Limits

Radionuclide	Class C SAL, Ci/m ³
1-129	0.08
Sr-90	7000
Cs-137	4600
Pu-241	3,500
Cm-242	20,000
α -emitting transuranics	100
with $t_{1/2} > 5$ yr	
C-14	8
C-14 in activated	80
metal	
Ni-59 in activated	220
metal	
Ni-63	700
Ni-63 in activated	7000
metal	
Nb-94 in activated	0.2
metal	
Тс-99	3

¹S. Fetter et al., *Fusion Engineering and Design* **6** (1988) 123-130; S. Fetter et al., *Fusion Engineering and Design* **13** (1990) 239-246.

Alloy concentrations to meet Class C disposal

1																
3	4	unlimi	niimited 10% 1% .1% .01% .001% .0001% .00001%													
Li	Be		Top half of box: hard spectrum B C										, N	0	F	
11	12	Bottom half of box: soft spectrum										13	14	15	16	17
Na	Mg											AI	Si	Р	S	CI
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br
37	38	39	40	41	42	no	44	45	46	47	48	49	50	51	52	53
Rb	Sr	Y	Zr	Nb	Мо	stable isotopes	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83		
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi		
	58 59 60 m 6.2 63 64 65 66								67_	68	69	70	71			
			Ce	Pr	Nd	stable isotopes	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

From: Piet, et al., "Initial Integration of Accident Safety, Waste Management, Recycling, Effluent, and Maintenance Considerations for Low-Activation Materials", **Fusion Technology**, Vol. 19, Jan. 1991, pp. 146-161. Assumes 5 MW/m² for 4 years; and E. T. Cheng, "Concentration Limits of Natural Elements in Low Activation Materials", **presented at ICFRM-8, Sendai, Japan,October 1997**

Summary

- D-T fusion will produce a significant amount of radioactive material via neutron activation of surrounding components
- Use of low activation materials can reduce decay heat produced by this material to lower levels than fission reactors
 - Likely not trivial levels though; passive decay heat removal is a critical aspect of facility design
- Designers need to verify that release of mobilizable inventories (activated coolant & dust, tritium) does not exceed regulatory dose limits (under normal operation and accident conditions)
- Use of low activation materials can also potentially eliminate the need for long-term/deep geologic waste disposal

