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What we found out in the clean energy world

We have worked extensively with utilities, investors, energy
companies, manufacturers around fusion. They are excited to
participate in a commercialization effort.

What needs to be done:

* Show net-energy high power production ASAP

* In a package that scales to an economical and market-relevant
power plant

* In arelevant timeframe

e With concrete risk retirement milestones
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Compact high-performance tokamaks: Demonstrated
high absolute performance in small package
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The road not taken: Compact, High-field, Copper

Ignitor CIT BPX

PGMNLIOR MACTINE

International study US study (MIT Oak Rldge PPPL) US study (PPPL) US study (MIT PPPL)

~1985- present ~1985-1990 ~1990- 1995 ~1998-2005
Alcator C-Mod was a prototype [Special issue, FST 21 3P1] [Meade, D. “FIRE” Fusion engineering and

design 63-64 (2002): 531-540.]

Ignitor 13 m 0.4m 11 MA 5s

CIT 10.4T 1.2m 0.46m 10 MA 5 530MW 3.8s

BPX oT 26m 0.8 m 11.8MA  5-25 100-500MW 10s 20MW
FIRE 10T 2.14m 0.595m 7.7MA 10 100-200MW 20s 20MW

These high-field tokamaks were the main thrust of the U.S. Next Step Options




Had they been built: They would have burned

Concepts validated by extensive

review by FESAC, NAS, workshops. gL _

ITER was chosen and the U.S. 6L -

program was down-selected. E -

There were compelling reasons to go _g 4 20 8px -

with ITER over FIRE and vice-versa. n rre T g
2L <<\g:)\oo Ignitor "

These copper machines would never I 0.2

scale to a power plant due to the ol
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Magnetic field [T]




What has changed: High-field superconducting with HTS

HTS (YBCOtape)  Moal
103 Nbsﬂ suparconds ucting
. CTTTTT P . hlgh -field target
Jecrit 1 moderate field, for compact S5
 High-temperature superconductors (HTS) are  (MA/m2) | Nh_sr'l“;:::‘t’;:;“spm gy
transformative [FESAC TEC report 2018] 02l el N\ B
* Enable much higher magnetic fields ;%%%
e Higher current densities ' “n,

12 14 16 18 20 22 24

* Only recently commercialized on a relevant scale Maximum field on coil, Bpeak (Tesla)

e Opens new options for power plants
e Commercially interesting on their own This is ambitious. A high'fiEId |arge-b0re

HTS coil has not been demonstrated. Yet.




ARC: An innovative high-field power plant
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Recent publication explores heat exhaust and other issues
[Kuang, FED 137 221-242, 2018]

This is at a scale and cost that is
commercially interesting
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SPARC: A fast-track HTS-based net-energy machine

Principles of program:

e Go fast

Use established plasma physics

e Require no breakthroughs beyond magnet

A net-energy . - . -
device at the * Leverage private experience in delivering

scale of DIII-D programs

e Avoid mission scope creep




SPARC: A fast-track HTS-based net-energy machine

SPARC programmatic requirements:

A net-energy
device at the
scale of DIII-D
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Demonstrate break-even fusion energy
production

e Should Q be higher?

Demonstrate fusion-relevant HTS
magnets at scale

Demonstrate high-field fusion plasma
scenarios for an ARC scale device

SPARC V0 technical requirements:

Burn D-T fuel

Q > 2 (with headroom)

Ptusion > SOMW up to 100MW

Pulsed with 10s flattop burn

~1,000 D-T pulses, >10,000 D-D pulses




A smaller, sooner machine offers physics advantages

ITER: 5.31, 6.2m |12T, 1.65m

Pulse length

Fusion power

Physics learning:

Pulse length/Plasma equilibrium time
Pulse length/Energy confinement time
Pulse length/Helium confinement time
Engineering systems:

Pulse length/Wall thermal equilibration time
Energy in/pulse

Energy out/pulse

Plasma thermal energy/surface area
Nuclear systems:

Tritium burned/pulse

Gas throughput/pulse

1029 neutrons produced/pulse

1029 neutrons fluence/pulse
SPARC =

400 s
500 MW
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350 mg
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10s
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1.7
17
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0.5

0.3GJ
1.3GJ
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2.7 Atm-|
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0.08 m2

Access to similar
physics

With orders of
magnitude smaller
engineering systems

At orders of magnitude
smaller nuclear impacts




The high-field approach to fusion energy

Phase 1: Phase 2: Phase 3:
Technology Demonstration Commercialization
Development
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SPARC
Q>2’ I:)fusion>5OM\N

Power Station: ARC
HTS magnets 4 year project ~ Q>10, Pgecyic=200MW
3 year project

This path is backed by our investors financially, and by
MIT institutionally for R&D. We are executing now.




Opening a new path to fusion risk-retirement
at much smaller scale = faster

¥
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A new model for fusion R&D and commercialization

CFSis a private company

MIT PSFC remains an
independent research
establishment

Investor-backed with the
aim of commercializing
the high-field pathway

Providing scientific and
R&D to the joint
project

nvestors are in it for the
long haul with capital to
see it through

Bringing the best of both worlds together:
The scientific underpinnings from tokamak research and

the speed, capital and drive of the private sector
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SPARC 2

CFS & MIT created a novel framework,
enabled by MIT Energy Initiative

* CFS provides funding
to MIT

e Collaborative R&D
e CFS is MITEl member

* A framework that can
be applied
throughout MIT &
academia for tough
tech development

11/25/18

Mir
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MITEI
Startup Member Agreement
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organized under the laws of the United States and the Commonwealth of Massachusetts,
and Commonwealth Fusion Systems, LLC ("Member" or “Sponsor”), a Delaware limited
liability company with an address at ¢/o The Engine, 501 Massachusetts Avenue,
Cambridge, MA 02139. MIT and Member may hereinafter be referred to individually as
“Party” or collectively as “Parties.”

U

1N

t embodies the entire understanding

he subject matter hereof. Any prior or

including its incorporated appendices)
ld signed by authorized representatives

e terms in a Member purchase order or
psearch Project is hereby disclaimed by

Il;ni\ es of the Parties hereto have

= =

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

// W,
. W - /,/
oy /

DIRECTOR
Date __OFFICE OF SPONSORED PROGRAMS —

e s
P VAN v /

/

/C / L 2 1/ [\ A
By v/ LU | K—’Ui’:fi‘/
liuc”imﬁm,ig /20/3 Title ZEE';

COMMONWEALTH FUSION
SYSTEMS, LLC.

! /,O 7 //
14

v L A
sy JW# 7K

Date 3/ /‘2@/,527,

il or written, are hereby superseded. No




SPARC &=

CFS closed its initial financing on 6/1/18 L
o
THE @ﬂ 'I

ENGINE

Built by MIT

* S50M strategic investment from
ENI

e Additional investments from world- g

leading financial investors £% ¢ Breakthrough
-+~ + Energy

* Currently discussing additional
a Billionaire-Backed Breakthrough Energy Ventures
H Makes 7 M |
I n Ve St m e n t S The?mdest?rted by Bilol(;'atees b’:cheR:)tizf?:i::psowen capturing water from the air and carbon in
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Our timeline motivates increased science efforts

Not necessary for SPARC— but helpful for ARC:

* Advanced divertors for higher power handling
e First wall plasma material interactions

« Radiation tolerant materials

« Blankets and power conversion

e Tritium processing

These have long been identified as important

The U.S. program should do them

.... sooner rather than later

A divertor test tokamak is
desired, ADX is an example.
An opportunity for US
leadership.



We are growing and diversifying MIT engagement in

fusion

* A new generation of interdisciplinary

students being attracted by SPARC,
funded by CFS, ENI and donations

-~

Caroline Sorenson
"MechE
Molten salt heat transfer

Erica Salazar
NSE
Magnet cables

Patrick White
NSE
Fusion licensing

Libby

Tolman

Physics Theo Mouratidis
Energetic Aero/Astro
particle Magnet structure
stability

11/25/18

M. Short
Nuclear Eng
Fusion Materials § |

MI. K. Emmanuel
EAPS
Climate policy

“JA. Lo
Sloan
Financing



We're taking a collaborative approach

e Engaging with fusion community on SPARC physics

« SPARC physics basis will be published and available

« An opportunity to test our blind prediction capabilities

« Operating machineintended to belong-term science asset

 DOE FES establishing framework for broader community participation
in program




SPARC VO: Nominal Starting Point

Technical objectives:

e Burn D-T fuel T‘

e Q> 2 (with headroom)

* Pion > SOMW up to 100MW
B, 12
* Pulsed with 10s flattop burn (about | 7.5
o .
2X TeR) Ro 165 m Desired schedule:
* ~1,000 D-T pulses, >10,000 D-D full- 05 m e R&D: 3 yrs (mainly HTS magnets)
power pulses 0.33
N & . e Construct: 4 yrs
e ~1 hr D-T pulse repetition rate K 1.8
e ~15 minutes between D-D shots Prus 50-100 MW
P 30 MW

SPARC

T\




Make the large-bore HTS Magnets Work?

REBCO tapes are already at performance needed
Challenges: jxB forces cooling quench protection
We are up and going on these with team of 50+ designing, building & testing

But cannot reveal details before IP disclosures

How Confident Are We That A “SPARC Class” Tokamak
Will Achieve Its Objectives IF magnets work?

-,
SPARC =
uwy



SPARC: Nominal Operating Space; Qg up to 3.6

« Use ITER Performance Rules
« Confinement Hgg=1
* Profile peaking factors
e Fuel mix
e Fuel dilution
* Operating Space Defined by
* Qeysion > 2
* Poss > Py (Threshold)
* Phearing <30 MW
* Prysion < 100 MW
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The Hyg = 1 Confinement Assumption Puts SPARC Within the
Footprint of the Existing Tokamak Database

s
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Of course, this doesn’t reveal much about the physics
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In Plasma Physics Variables, the SPARC Operating Point Is Generally
Closer to the Mean of the H-mode Confinement Database than ITER
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For Example, SPARC operates in a well explored region of normalized density

20T T c1)120: ------------------- :
: ' : : : - é 100k 1 4 SPARC baseline
15} - 2 [ ]J 1 operation
[ s 80¢ [ ;
210} : £ 60f Ir.J :
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0.5 T e'seaRc 1 g ook A ]
i : A |TER ks [ ‘ I 1 ITER operation
00b . o ®TTERDB = oo B I
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n/ng
Running comfortably below the density limit The level of plasma fluctuations and convective losses
has a strong advantages are dramatically lower
— Less susceptibility to disruptions — Strongly reduced main chamber wall interactions
— Easier, generally, to get good confinement — Less scattering of RF waves by edge fluctuations
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We Can Find Discharges That Are Very Close To Matching, Simultaneously, All SPARC
Dimensionless Plasma Parameters and Geometry (B, v*, p*, dqz, NG, €, K, 0,)
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are shown in red

— B,=3.0-4.0T
— 1,=3.0-4.2 MA
— P=82-15.8 MW
— Hgy=0.82-1.08




We Can Find Discharges That Are Very Close To Matching All SPARC Dimensionless
Plasma Parameters (B, v*, p*, dgs Ng, €, K, O,) Simultaneously
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Thus: Much of the Core Plasma Physics Has Been Already Observed
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are shown in red
— B;=3.0-4.0T
— 1,=3.0-4.2 MA
— P=8.2-15.8 MW
— Hgg=0.82-1.08




We Can Find Discharges That Are To Matching All SPARC Dimensionless
Plasma Parameters (B, v*, p*, dgs Ng, €, K, O,) Simultaneously
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Why didn’t those JET discharges generate 100 MW of fusion?
Fusion is nuclear physics — Doesn’t scale with dimensionless plasma parameters

* In fact, we’re eagerly looking forward to experiments in the regime where plasma
physics and nuclear physics are coupled — this will be new
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Lots of Upside Potential
Performance Estimates Robust With Respect To Confinement Assumptions

* Q=2-3.6 With Hyg =1: Nominal SPARC ||p=. 7-.50. Bt_=1 2.00

10 | I ITI:ZR98;12 Hl=1.16 - 12
« Qupto5 One standard deviation above ' JQ:Q O I iakel R
database mean, Hyg = 1.1: sl X 11.0
e Perhaps higher in I-mode ! A _ 0.8
e Q > 2 One standard deviation below database :E o k\“x 2
mean, Hqyg = 0.9: j= - \ 0.6 W
= [ I :
° ~ i - = 3 ar |
Q= 1inL-mode Hgg=1 v / N\ 0.4
* Q> 2.6 Under slightly improved L-mode, Hgq = : /T % ]
1.4 2r :10.2
e Enhanced Confinement with reduced ! L ~
magnetic shear, hybrid regime should be 00 — 5' 1'0 15()'0
accessible transiently <T> (keV)
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We've established physics plausibility for SPARC VO - but just
started to explore the design space

We Need to Continue to Build the Physics Basis For SPARC
Given the SPARC mission, We pose three questions:

* What the best configuration for a SPARC-class device? — is there something
better than Version 0 in the same neighborhood?

* When we build a SPARC-class device, what level of performance do we predict?
— What do we need to build in to the design to ensure success?
* What new and important physics questions will SPARC allow us to address?

— What should the physics program look like?

— S PA é




Main Physics Topics

* Plasma Startup, Equilibrium & Control

* |CRF Heating — Getting power in

* Plasma Exhaust — Getting the power out

* Core & Pedestal — Predicting profiles & fusion power

e MHD/Fast Particle Physics — Disruptions & Confining fusion products
* Nuclear Issues — Vlanaging tritium & neutrons

* Diagnostics — Measuring & validating progress

—— SPARC
T\



Simple estimates of PFC response indicate inertial
cooling is feasible in SPARC, but not ITER

ITER: Peyp=150 MW, S,.e=5% S,ama™45 M2 gt 14 s
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Case study: Double null divertor with strikepoint
sweeping, 2 cm thick, inertial cooled divertor is viable

e SOL radiation fraction: 0.9

Double null to spread heatflux to

upper and lower outer divertors

Maximum Surface Temperature (K)

4000 | T
3500+ | — Tungsten i
Aggresslve strikzpoint —_— M0|y bdenum
sweeping to spread energy u i
‘O\rrer.the entire surface, 3000 — Gra ph ite
minimize peak temperature 2500} |
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1500 .
/ 1000 y
\ 500 n
ol 1 1
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A large strategic advantage to assess dissipative divertor
physics solutions:

SPARC, H=1.1, Q=5-10, P;< 200 MW ITER Q=10
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SPARC boundary plasma physics solutions relevant for
ARC and other fusion power plant designs
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New design study: demountable REBCO g
coils + immersion salt blanket very
attractive for innovative divertor

- Demountable
~ TF Joint
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[ | /1
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A
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», Field Coil

* Minimal solid materials!

RO v * Internal PF coils allow
| '1 Col
Central Megal e
Solenoid 2, ST e advanced long-leg
ke | divertor...we focused on
}""M Current- the X-pOint ta rgEt
‘ ‘ . Turns .
L] Cll Al divertor [LaBombard]
\ | f turns] . .
o) \ G g s * Modeling shows this has
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Kuang et al FED 2018
11/25/18



And in turn the long-leg divertor + blanket =¥

dramatically decreases neutron damage
rate for divertor high heat flux components

15
1.8 10° gy -
Energetic 2 e S———— ISR —
Neutron flux = —— Midplane
10 (>100 keV) = ~— Divertor x50
5.3 X 10 i 5 1.5 K
[n/cm?/s] f
1.6 x 106 . E 1T
z ~ 5 dpa / year
~. 0.5

Coil Lifetime [FPY]
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Kuang et al FED 2018
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The high-field approach to fusion energy

Phase 1: Phase 2: Phase 3:
Technology Demonstration Commercialization
Development

]

SPARC
Q>2, Pision=>50MW

Power Station: ARC
HTS magnets 4 year project @10, Pypyic~v200MW
3 year project

This path is backed by our investors financially, and by
MIT institutionally for R&D. We are executing now.



Have Good Ideas? Want to Help Make The Design Even Better?

e (Contact

— Martin Greenwald g@psfc.mit.edu

— Nathan Howard nthoward @ psfc.mit.edu

— Bob Mumgaard bob@cfs.energy
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./ Thank you!
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