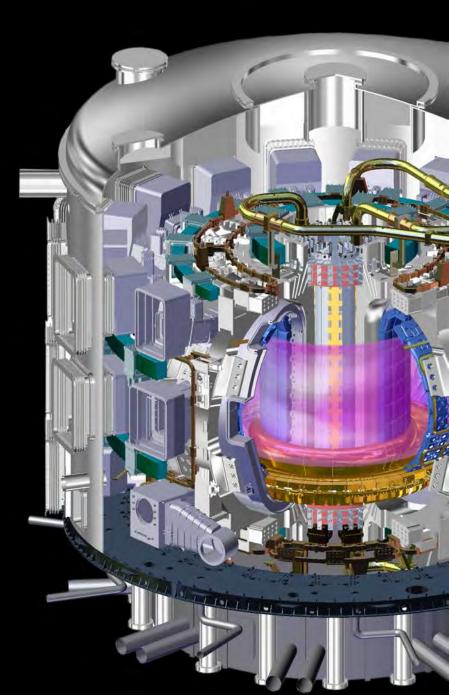
# Report on Activities of US ITER Project

#### **Brad Nelson**

Chief Engineer, US ITER Project Office


for

#### Ned R. Sauthoff

Director, US ITER Project Office

Burning Plasma Organization January 23, 2015





### **US Scope**



ORNL 100% Central Solenoid (using JA conductor)

ORNL 8% of Toroidal Field Conductor

ORNL 100% Pellet Injector

ORNL 100% Disruption Mitigation (up to capped value)

> PPPL 75% Steady State Electrical Network

PPPL 14% of Port-based Diagnostics

ORNL 100% Ion Cyclotron Transmission Lines

ORNL 100% Electron Cyclotron Transmission Lines

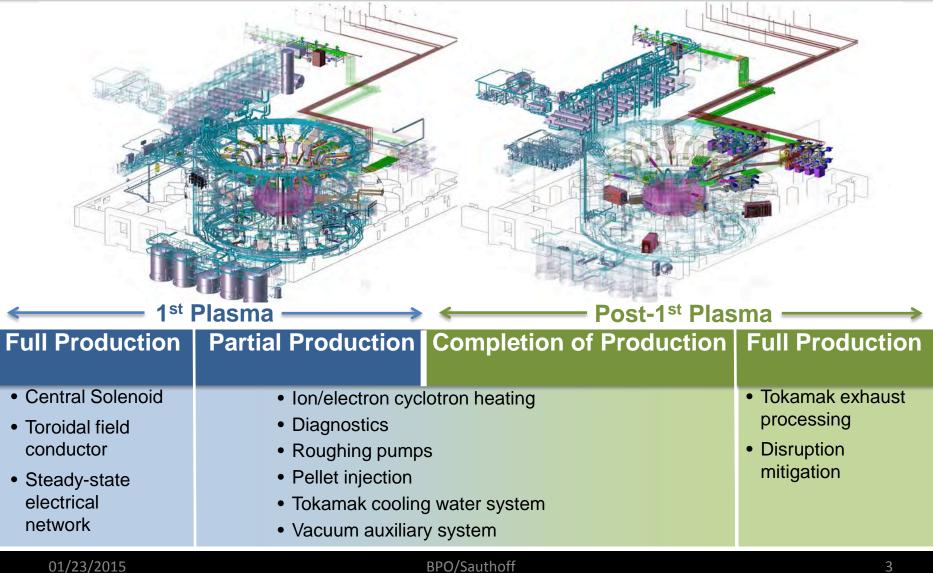
ORNL Blanket/Shield (design support)

ORNL 100% Roughing Pumps Vacuum Auxiliary System

SRNL 100% Tokamak Exhaust Processing System

**ORNL: Oak Ridge National Laboratory** 

**PPPL: Princeton Plasma Physics Laboratory** 


SRNL: Savannah River National Laboratory

**BPO/Sauthoff** 

Scale

## **Scope Delivered in 2 Phases**

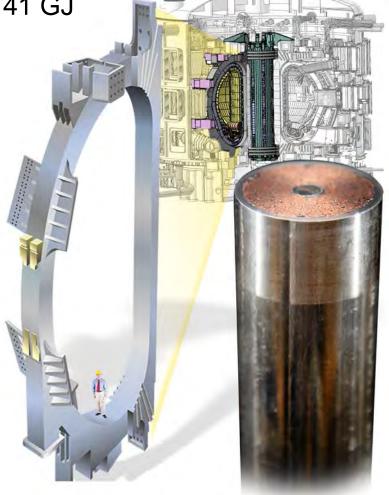




# **US Progress to Date**

all the sea

#### any remper


- Current in 1 TF Coil: 9.11 MA
- Number of turns in 1 TF coil: 134

**BPO/Sauthoff** 

# **Toroidal Field Coil**

- Total Magnetic Energy of all TF Coils: 41 GJ
- Maximum Magnetic Field: 11.8 T
- Number of Coils: 18
- Total TF Coil Weight: 6540 t
- TF Coil Height: 16.5 m
- TF Coil Width: 9 m







### **Toroidal Field Conductor** *All strand completed in FY13*





Production conductor strand at Oxford Superconducting Technology in Carteret, NJ

### Toroidal Field Conductor Cabling





### **Toroidal Field Conductor** *Jacketing and Integration*





High Performance Magnetics jacketing and integration facility in Tallahassee, Florida

Photo: US ITER

## **Toroidal Field Conductor** *Initial Shipments to EU Winding Facility*





Truck arriving at ASG in Italy with US TF 800 meter dummy conductor

#### US TF 800 meter Dummy Conductor US TF 100 meter Active Conductor (Oxford)

US 8% contribution includes over 4 miles of conductor, which is constructed from 40 tons (over 400 miles) of niobium-tin superconducting strand



US TF 800 meter dummy conductor – delivery at ASG in Italy

01/23/2015

### **Toroidal Field Conductor** 2015 TF Shipments to EU Winding Facility





- US TF 800 meter Active Conductor (Oxford)
- **US TF 100 meter Active Conductor (Luvata)**
- The 800 meter active conductor (Oxford) was loaded at the Port of Charleston on December 17, 2014 for shipment to ASG in Italy. Photo: US ITER



### Toroidal Field Conductor Technical Challenges



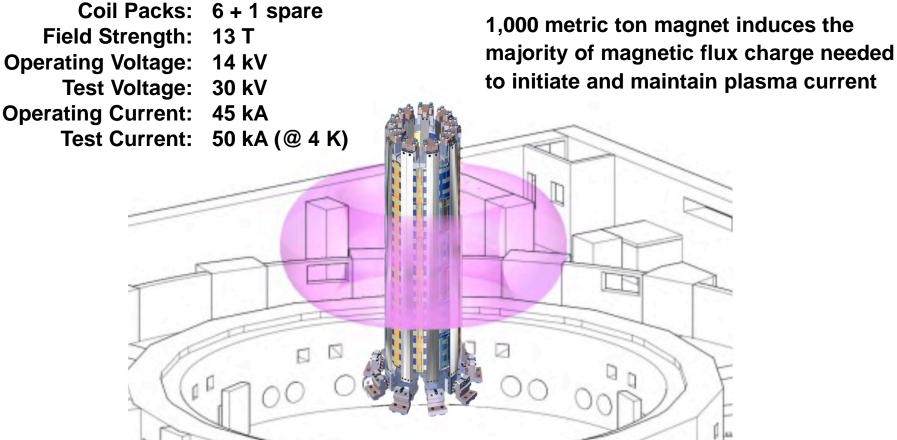
#### **Resolved Challenges**

- Resolved scraping of trivalent Chromium plating during cabling by revised cabling configuration
- Successful cabling of first production cable

#### **Current Challenges**

- Twist-pitch length modification during jacketing
- Successful demonstration of TF conductor performance (Tcs measurement on SULTAN Facility)
- Recent strand breaks on OST cable run (use of alcohol as a lubricant/cooling agent is expected to resolve issue)

#### 01/23/2015


**Central Solenoid** The Heartbeat of ITER

The most powerful pulsed superconducting electromagnet in history (5.5 Gigajoule stored energy capacity)

**BPO/Sauthoff** 

12





### **Central Solenoid Module** *Fabrication Stations*



Central solenoid fabrication facility ramping up at General Atomics in Poway, California

- 5 of 11 tooling stations in place
- 2 of 11 tooling stations in operation
- Mock-up winding underway

# Module Tooling Stations are Being Installed at General Atomics



1: Conductor receiving inspection



2: Winding (2)



3: Joints & Terminals Preparation

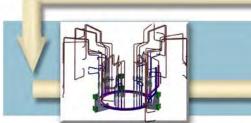


4: Stack & Join/Helium Penetrations



5: Reaction Heat Treatment




6: Turn Insulation



7: Ground Insulation




8: Vacuum Pressure Impregnation



9: Helium Piping & Measurement



10: Final Test at 50kA, full force



Transfer Ownership

#### 11: Shipping

#### 01/23/2015



#### **Central Solenoid** Japanese Conductor Ready for Winding





Dummy conductor shown loaded on winding machine – in prep for mock-up winding.

4 central solenoid active conductor spools and 1 dummy at General Atomics.

### **Central Solenoid Tooling Station:** 1<sup>st</sup> Winding Station Installed



#### MRR conducted in July 2014



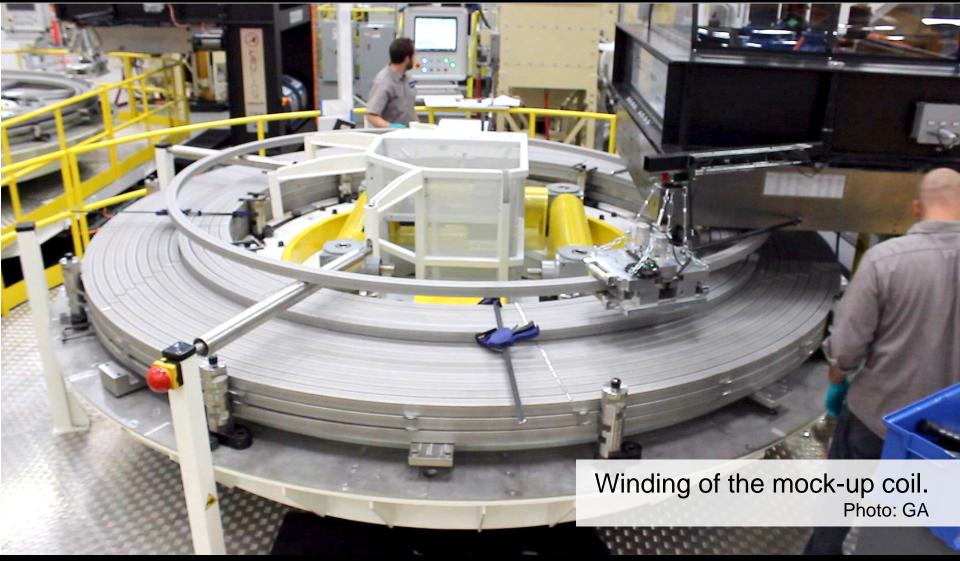
01/23/2015

### **Central Solenoid** *Winding Began in August*





Conductor routed from the de-spooler of the winding.




Conductor routed through the straightener.

Photos: General Atomics

## **Central Solenoid Tooling Station:** *Winding*





### **Central Solenoid Tooling Station:** *Heat Treatment Furnace*

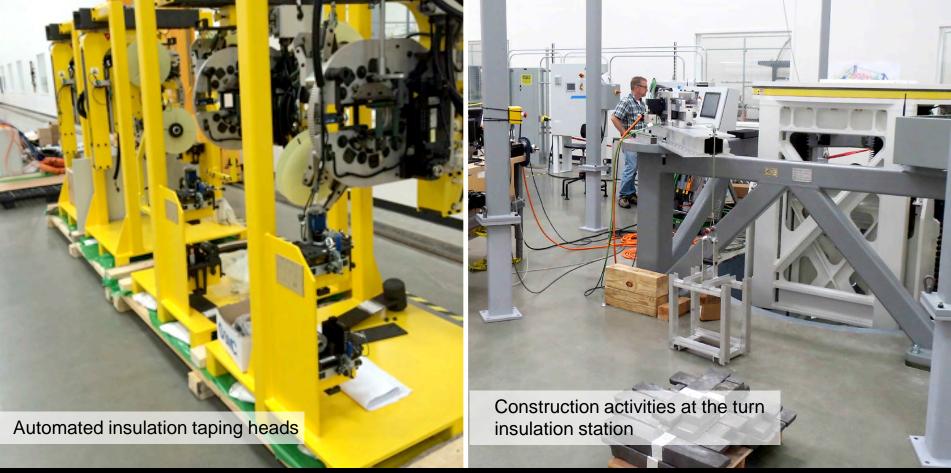




# Specifications for heat treatment furnace:

- Height 7 m
- Diameter 5.56 m
- Weight 132 Tonnes (including Module)
- Power 800 kW
- Medium Argon
- Pressure 1 x 10<sup>-2</sup> mbar

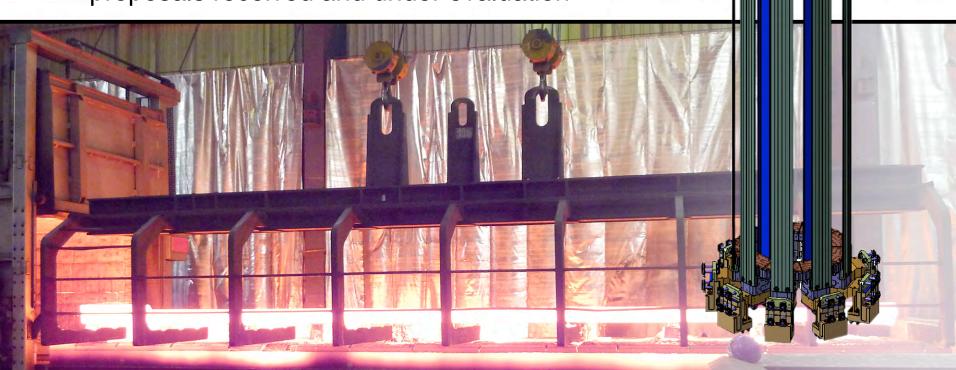



Heat treatment furnace and associated equipment has been installed at General Atomics and is undergoing testing.

01/23/2015

#### **Central Solenoid Tooling Station:** *Turn Insulation*




- Factory acceptance testing completed at vendors
- Units will be re-assembled and commissioned using mock hexapancake



### Central Solenoid Structures Contracts



- Placed first production contract with Peterson (Ogden, UT) for lower key blocks and isolation plates
- Issued RFP for tie-plate procurement; proposals received and under evaluation



### **Central Solenoid** *Technical Challenges*



#### **Resolved Challenges**

- Met winding station tolerances, successful factory acceptance test of winding station
- Mock-up coil winding underway
- Resolved path to avoid corrosioncracking in JK2LB
- Demonstrated fabrication of onepiece tie plates and tie plate procurement underway

#### **Current Challenges**

- Non-Destructive Evaluation techniques to detect flaws in helium inlet, R&D work to resolve issue is near completion
- Controlling grain size on onepiece tie plate (mitigated by further mechanical testing of forgings with relaxed grain size requirements)
- Successful demonstration of friction lifting device

# **Steady State Electrical Network**





4 power feeds:

- 2 at 6.6 kV distribution
- 2 at 22 kV distribution

Standards: International Electrotechnical Commission standards for 50Hz operation

**ITER Switchyard** 

### **Steady State Electrical Network** 1<sup>st</sup> Plant Components Delivered to ITER Site





High voltage surge arresters, delivered by the US on September 4, 2014, are the first plant components delivered to the ITER site. Photo: ITER Organization

01/23/2015

### Steady State Electrical Network 1<sup>st</sup> Highly Exceptional Load





HV substation transformer unit at Hyundai Heavy Industries. Photo: HHI

01/23/2015

#### **Steady State Electrical Network** 1<sup>st</sup> Highly Exceptional Load Delivered to ITER Site



The main body of a HV substation transformer shown during unloading at Fos-sur-Mer. This was the first highly exceptional load delivered to the ITER Site. Photo: ITER Organization

01/23/2015

### **Steady State Electrical Network Completed FY14 and FY15 Deliveries**





HV substation hardware

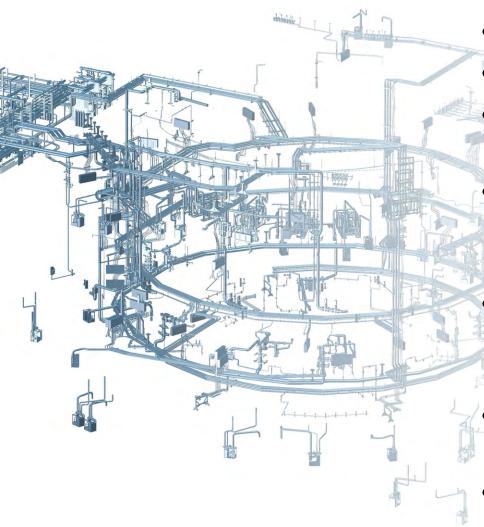


```
HV switches
```




#### HV current transformers










# Vacuum Auxiliary System and Roughing Pumps





- Tokamak vacuum volume: 1330 m<sup>3</sup>
   Cryostat vacuum volume: 8500 m<sup>3</sup>
   Neutral beam injectors' volume: 8600 m<sup>3</sup>
- Vacuum system performance: 105 Pa to 10 Pa in 24 hours, operating pressure 1 x  $10^{-4}$  Pa
- Roughing pumps: 400+ vacuum pumps utilizing 10 different technologies
- Service vacuum system: >1500 clients
- Vacuum piping: 6 km

# Vacuum Auxiliary System and Roughing Pumps





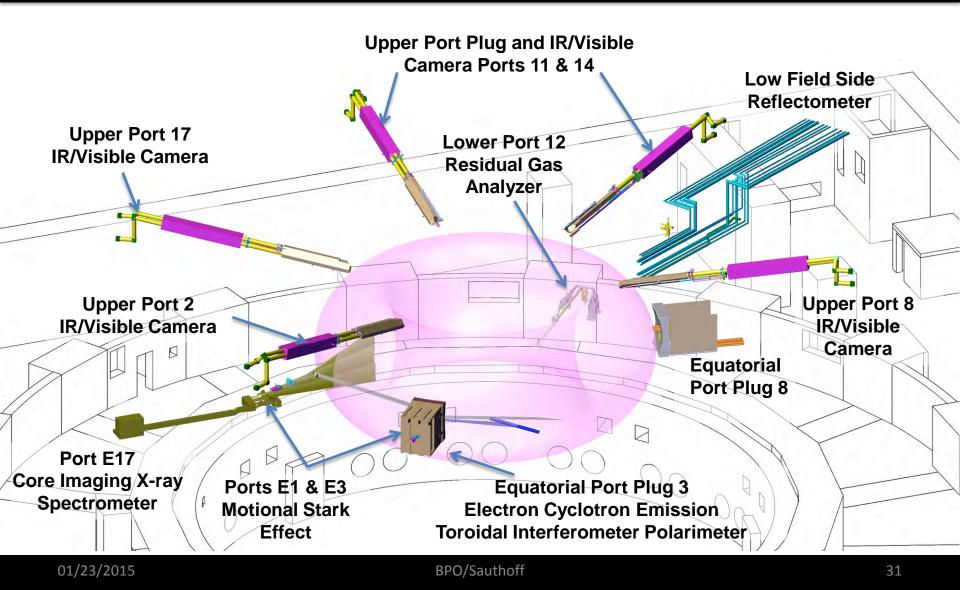
CVC assembly undergoing vacuum leak testing

Manufacture of the prototype tritium compatible Cryogenic Viscous Compressor (CVC) was completed and is now being prepared for performance testing at the Cryogenic Test Facility (CTF) at the Oak Ridge National Laboratory



Cryogenic thermal shield to cool CVC core

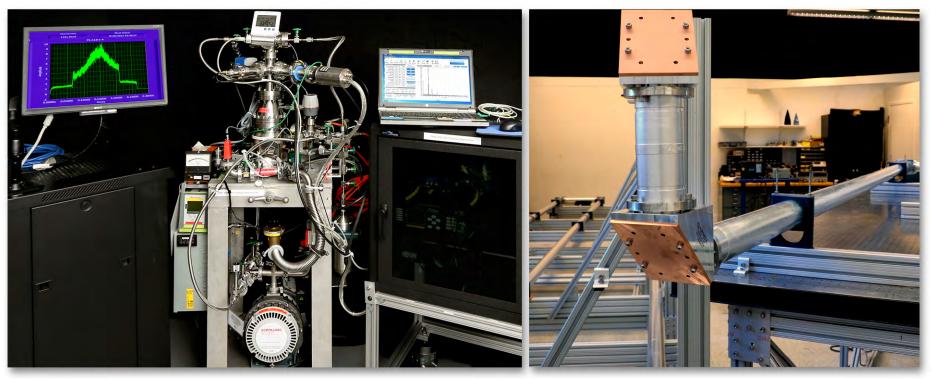
01/23/2015


#### Vacuum Auxiliary System and Roughing Pumps Technical Challenges



| Resolved Challenges                                                                         | Current Challenges                                                                                               |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Simplified US role in complex piping<br/>by IO arrangement (now signed)</li> </ul> | <ul> <li>Performance of cryo-viscous<br/>compressor and screw pumps<br/>(testing is underway at ORNL)</li> </ul> |

# **Diagnostics**






### FY 2014 US Achievements: *Diagnostics*



The residual gas analyzer and part of the low-field side reflectometer will be installed for 1<sup>st</sup> Plasma.



Diagnostic residual gas analyzer in development at ORNL. Photo: US ITER/ORNL A test stand for the low-field-side reflectometer at UCLA mimics an ITER-like waveguide route. Photo: US ITER/ORNL

### Diagnostics Technical Challenges



#### **Resolved Challenges**

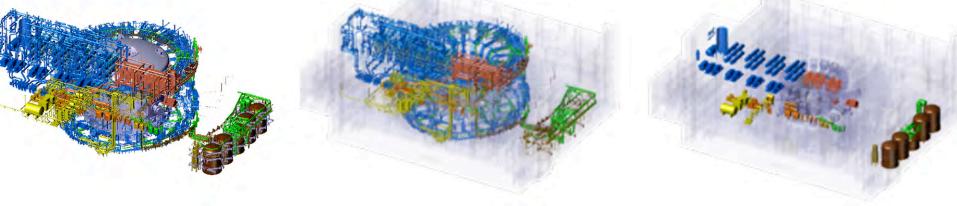
 Addressed overly complex interfaces between diagnostics from multiple DAs in each port plug by modularization and standardization

#### **Current Challenges**

- Meeting radiation shielding requirements in the port plugs while simultaneously satisfying diagnostic measurement requirements and weight limits
- Qualifying new technologies associated with in-situ calibration and mirror-cleaning capabilities

#### 01/23/2015

# **Tokamak Cooling Water System**


- Total installed heat removal capacity: 1,000 MW (thermal)
- 100+ major industrial pieces of equipment operating with maximum design temperatures of 400 °C (gas) and maximum pressure of 5 MPa (water @ 240 °C)
- Max coolant operating temperature: 126 °C (plasma), 240 °C (baking), 350 °C (gas baking)
- Max design pressure: 5.0 MPa
- Radioactive water storage capacity: over 1,000,000 L



## TCWS Arrangements with IO Optimizes Roles and Responsibilities



- US scope defined in Procurement Agreement (PA) and unchanged (design, fabrication, and delivery)
- Subsequent Arrangements optimize the assignment of roles
  - US retains responsibility per the PA and provides major assemblies
  - IO as "subcontractor" performs final design and piping procurement



#### Full System

- Managed by USDA
- Design and procurement by USDA
- Installation by IO

#### Design & Piping

- Multiple (16) Contracts
- Managed by ITER IO
- Reviewed by USDA

#### ŀ

#### Equipment

 Fabrication Contracts for 100+ assemblies managed by USDA

### Tokamak Cooling Water System Deliveries in FY15



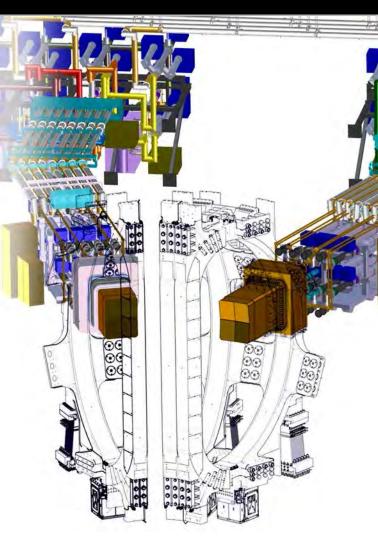


All drain tanks (four 61,000 gallon drain tanks and one ~30,000 gallon tank) will complete fabrication by February 2015. At left, a completed tank undergoes a lifting test. At right, tanks in earlier stages of fabrication. Photo: US ITER

01/23/2015

### Tokamak Cooling Water Systems Technical Challenges




#### **Resolved Challenges**

- Demonstrated successful processes for manufacture and ANB approval of nuclear-qualified components (specific EU requirements to vendor, involvement of ANB at factory)
- Established IO-TCWS team to complete design/procure piping

- Redesign TCWS to reduce the consequences of <sup>16</sup>N gamma dose rate and <sup>17</sup>N fast neutrons to personnel and electronics
- Finalize 1<sup>st</sup> Plasma scope and requirements
- Oversight of IO as TCWS designer and piping manufacturer

### Ion Cyclotron Transmission Lines and Matching System

- Provide efficient transfer of 24 MW 40–55 MHz RF power from sources to plasma antennas using coaxial line and load tolerant matching/tuning
- Transmit up to 6 MW per line for up to 1 hour
- Total of 1.5 km of line connects 8 sources to 16 antenna feeds
- Two 8-channel matching networks weighing 27 t each
- Two 8-channel pre-matching networks weighing 14 t each
- Maximum losses: 2.5% of source power in the transmission line system, 10% in the matching system



### **Ion Cyclotron Achievements**





Internal view of outer conductor (aluminum) and inner Dshaped conductors (copper) of the power splitter. Photo: Mega Industries, Gorham, ME 3-spoke insulator flange

01/23/2015

**BPO/Sauthoff** 

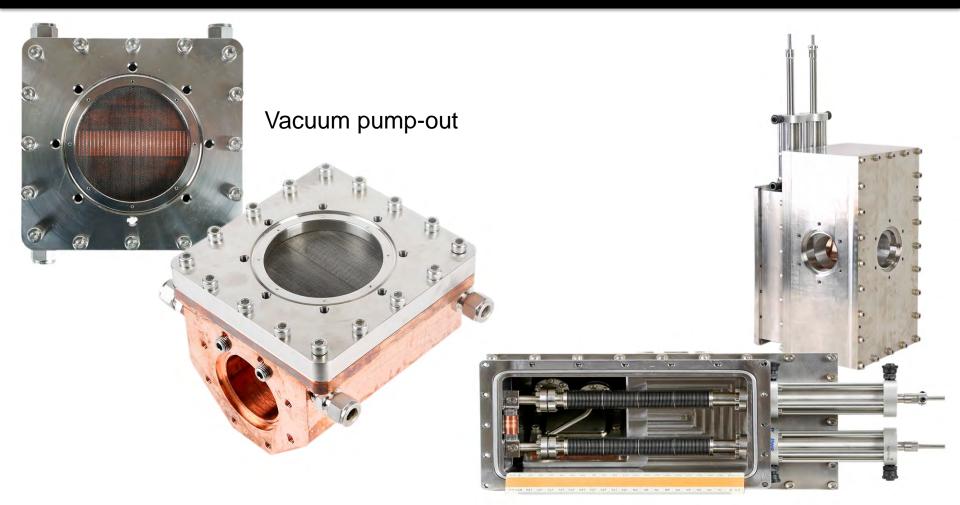
### Ion Cyclotron Transmission Lines Technical Challenges



#### **Resolved Challenges**

- Cooling of 50-Ohm components by pressurized air circulation
- Successful testing of hybrid splitter to accommodate plasma load changes

- Building interfaces for penetrations through Tokamak Building wall and Port Cell wall for transmission line, services and cabling (especially meeting fire requirements)
- Cooling of 20-Ohm components with water-cooling of inner conductor


### **Electron Cyclotron Transmission Lines**



- Provide efficient power transfer from 170 GHz gyrotron sources to launchers
- Transmit up to 1.5 MW per line for 1 hour
- Transmission lines from 24 sources to 56 feeds

### **Electron Cyclotron Achievements**

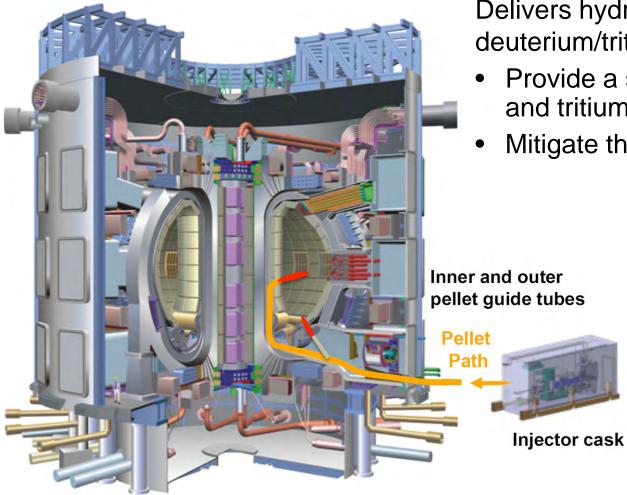




#### Microwave switch

## Electron Cyclotron Transmission Lines




#### **Resolved Challenges**

 Resolved necessary alignment/manufacturing tolerances to minimize power loss through mode conversion

- Building interfaces for penetrations through Tokamak Building wall and Port Cell wall for transmission line, services and cabling (especially meeting fire requirements)
- Precise alignment needed to avoid excessive mode conversion power losses

### **Pellet Fueling and Pellet Pacing**



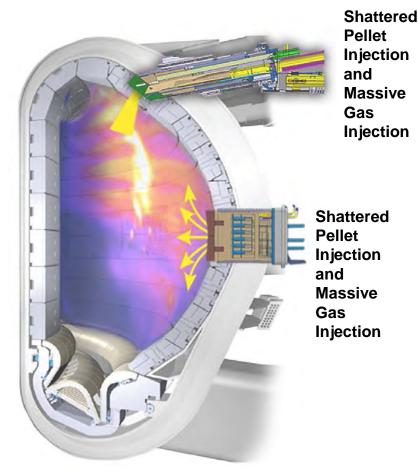


Delivers hydrogen, deuterium and deuterium/tritium pellets to:

- Provide a steady supply of deuterium and tritium fuel
- Mitigate the impact of ELMs

### **Configuration:**

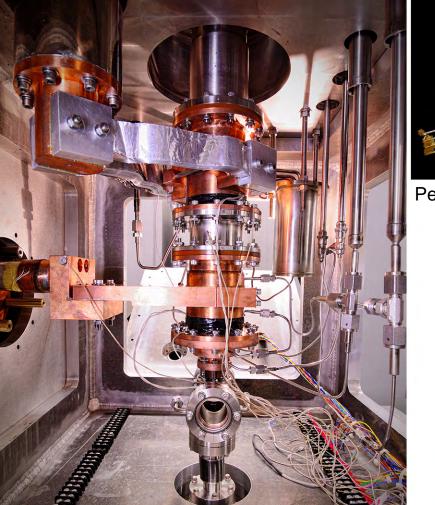
- Two pellet injection casks with dual injectors in each cask
- Guide tubes to inner and outer wall locations
- Guide tube selector to route pellets as needed


### **Disruption Mitigation System**

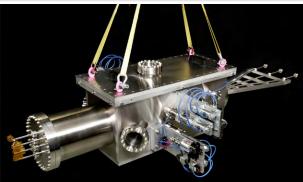
#### **Requirements:**

- Rapid plasma thermal quench to mitigate localized heat loads (response time ~10 ms)
- Plasma current quench to mitigate mechanical loads (response time ~200 ms)
- Suppress or dissipate runaway electron current (response time ~20 ms or ~500 ms, respectively)

#### **Configuration:**


- Shattered pellet injectors (SPI) located outside three upper port cells with pellet shattered near plasma edge
- Multiple SPI located outside equatorial port cell with pellet shattered near plasma edge
- All SPI gas acceleration valve can be used for Massive gas injection (MGI) by not forming a pellet
- Guide and shatter tube are the only SPI/MGI components inside port plug




01/23/2015

### Pellet Injection and Disruption Mitigation Achievements



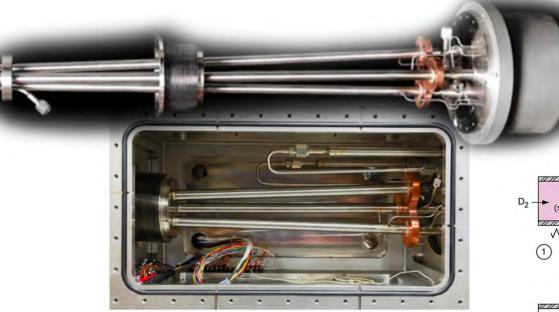


Twin-screw pellet extruder

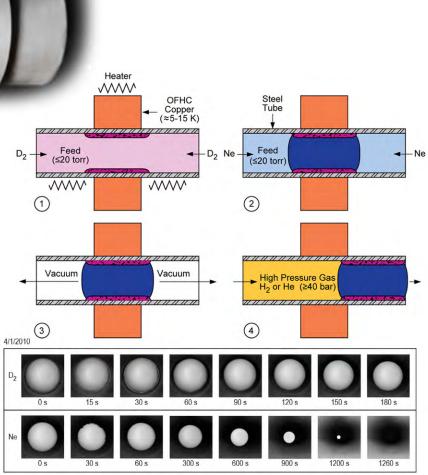


Pellet guide tube selector test unit




Deuterium-neon pellet formation testing




3-barrel unit prototype for disruption mitigation

### Milestone Completed: Shattered Pellet Injection 3-Barrel Testing





- Barrel diameter increased to 34 mm in order to study scaling of freezing/forming
- Larger size will reduce the number of barrels needed for Disruption Mitigation System



### **Pellet Injection** *Technical Challenges*



#### **Resolved Challenges**

- Flexible barrel selector method to route the range of pellets for fueling or ELM pacing
- Stimulated frequent ELMs to mitigate large ELMs on DIII-D

#### **Current Challenges**

 Sustained high mass flow, longpulse pellet forming extruder for long ITER pulse lengths

### **Disruption Mitigation** *Technical Challenges*



#### **Resolved Challenges**

- Successful testing of shattered pellet technology in DIII-D
- Successful forming and acceleration of large Deuterium/Neon pellets

- Achievable system response time of gas and pellets at high reliability
- Reliable sealing of massive gas injection valve

### Tokamak Exhaust Processing System



### **Configuration:**

- TEP equipment located in Tritium Building
- Tritium Confinement provided by nitrogen inerted gloveboxes and Tritium Building
- Gamma Decay Tanks located on separate floor

### Status:

- In preliminary design
- TEP required for DT Plasma

### Tokamak Exhaust Processing Technical Challenges



#### **Resolved Challenges**

 Availability of manufacturer for specialty equipment (Permeator and Palladium Membrane Reactor) for 10x flow rate with unique ITER concentrations and requirements

#### **Current Challenges**

• Tritium inventory limit related to fire zones

## **US ITER – State of the Project**

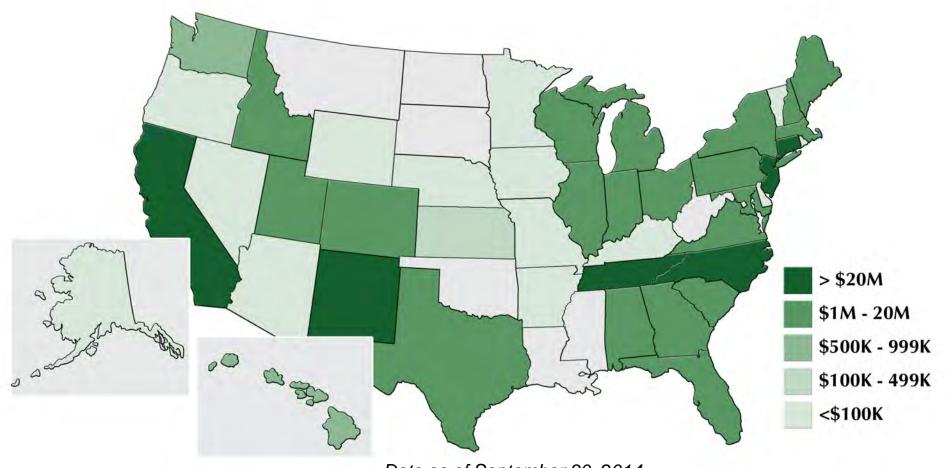
R. Barres

### Near-Term (FY 2014-16) Status Summary



### FY14

- Fabrication underway for critical-pacing items
  - ~2/3 (by value) of US hardware systems in final design or beyond
- ~1/2 (by value and number) of planned contracts have been awarded
- Key hardware deliveries on-going


### FY15-16

- At the end of FY16,
  - Only one procurement arrangement remaining to be signed
  - 28% of US hardware deliveries needed for 1<sup>st</sup> Plasma will be complete
  - One US hardware contribution will be complete in FY16 (toroidal field coil conductor)

# Over \$682M in Awards and Obligations



US Industry and University Awards, and DOE Lab Funding: ~\$682M



Data as of September 30, 2014 Note: Data above does not reflect contracts awarded to US Industry by the EU (>\$55M)

**BPO/Sauthoff** 

### **International Status**



- New ITER Organization Director-General nominated
- Schedule update anticipated by the end of CY2015
  - Major site construction progress is underway





Photo: ITER Organization • April 2014

**BPO/Sauthoff**