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It's Time to Get Serious about Fusion Energy

- We've made a lot of progress
— Physics issues, new solutions, ITER on frack
— Need to apply to develop a power plant concept

Fusion product, . T, (10 m-skeV)

» Should not wait around for ‘unobtanium’ solutions
— Base on what we know or will know soon
— Can't wait for perfect answer

» Aggressive plan must accept some risk & figure out as we go
— Staggered decision making & design integration

Main parameters ¢ Engineering design: coils, vessel, forces, neutronics 4 Long lead fabrications: vessel, TF, PF 4 Assembly ¢ Mld 20305
Heating & CD & RF system design RF fabrication ¢ RF install
Divertor config ¢ Divertor design 4
Materials & PFC design & PFC fabrication ¢ PFC install ¢
Quench choice ¢ Quench system design ¢ Quench fabrication ¢ Quench install ¢
Core-edge solution ¢ Operating scenarios & control preparation 4
Primary Safety, li ing, breeding, remote ing, power ion, plant > ongoing research, p! yping, design, integration, fabrication, i ion ¢ éTRPCI; (e:"f

* Ambitious research program needed < CPP plan
— Technology development
— Plasma solutions < Focus of this talk
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Plasma Solutions for FPP Still Face Significant Challenges

« Critical issues

— At low torque & safety factor plasma subject to disruptions _ RMP current
b
— ELMs hard to control fkA RMP
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Plasma Solutions for FPP Still Face Significant Challenges

« Critical issues
— At low tforque & safety factor plasma subject to disruptions
— ELMs hard to control
— Materials in plasma environment & interaction with core

Core
Contamination
(other groups)

Local PMI
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Plasma Solutions for FPP Still Face Significant Challenges

« Critical issues
— At low tforque & safety factor plasma subject to disruptions
— ELMs hard to control
— Materials in plasma environment & interaction with core

— Power handling in the divertor & mitigation of the
challenge it faces upsiream

Bolometer (0, 15 MW/M?) 177014
N —

/| Attached

Deeply
Detached

Pedestal pressure
(kP
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Plasma Solutions for FPP Still Face Significant Challenges

* Critical issues

— At low tforque & safety factor plasma subject to disruptions

— ELMs hard to control

— Materials in plasma environment & interaction with core

— Power handling in the divertor & mitigation of the
challenge it faces upstream

— Development of high performance core solutions
and projection in reactor relevant regimes

Healmg &

« Transport, stability, fast ions, pedestal, dissipation, divertor cu,,e,..

Profiles
set by transport
and stability

Transport and stability
depend on current &
pressure distributions

\/
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Plasma Solutions for FPP Still Face Significant Challenges

« Critical issues
— At low tforque & safety factor plasma subject to disruptions
— ELMs hard to control
— Materials in plasma environment & interaction with core

— Power handling in the divertor & mitigation of the
challenge it faces upstream

— Development of high performance core solutions
and projection in reactor relevant regimes

« Transport, stability, fast ions, pedestal, dissipation, diverfor

» Choice of plasma operating scenario has primary impact
on the challenge and the solutions to meet the FPP goal
— Key questions on where to operate:
« Current, q, pressure, field, size, shape, etc.
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Plasma Solutions for FPP Still Face Significant Challenges

« Critical issues
— At low tforque & safety factor plasma subject to disruptions
— ELMs hard to control
— Materials in plasma environment & interaction with core

— Power handling in the divertor & mitigation of the
challenge it faces upstream

— Development of high performance core solutions
and projection in reactor relevant regimes

« Transport, stability, fast ions, pedestal, dissipation, divertor

* Choice of plasma operating scenario has primary impact
on the challenge and the solutions to meet the FPP goal
— Key questions on where to operate
» Current, q, pressure, field, size, shape, etc.

* Pulsed & Steady State concepts offer promising solutions ™S &% .
— Strengths and challenges for both
° - = 5 q g eﬁ&
Exciting research in coming years will resolve the path
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Plasma Solutions for FPP Still Face Significant Challenges

* Critical issues
— At low torque & safety factor plasma subject to disruptions

— ELMs hard to contrgl
— Materials in plosnf'
— Power handling i This talk sets out the motivation and principles of

challenge it facH .
_ Development of the Steady State approach to fusion energy

and projection irf
* Transport, sta

A choice between pulsed and steady state
will become clear in coming years

* Choice of plasma

on the challenge {

— Key questions on

» Current, q, pressure, Tield, size, shape, efc.

We will all embrace what obviously works

e
ot et e e

» Pulsed & Steady State concepts offer promising solutions
— Strengths and challenges for both

Exciting research in coming years will resolve the path
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

* Pilot power plant projection and benefits
—Key frends in optimization & attractive solutions

* Research needs
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Tokamak Concept Meets Fusion Challenge with Flux Surface Structure

Solenoid

Poloidal field Shaping * Plasma current + toroidal field

generates flux surfaces
— Confines hot plasma
for fusion conditions

— Confines a's to
heat plasma

* Requires sustainment with

— Sufficient heating } p
— Sufficient current drive aux

Total field Toroidal * Leads to efficiency metric

. . _ P fus
Plasma Current Toroidal field Fusion Gain, Q = —

Paux

Need to minimize auxiliary power for efficient fusion solution
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Tokamak Must Confine Heat

* Energy confinement governed transport and turbulence

— Neoclassical transport depends on poloidal ion Larmor radius € Current dependent

« Sets base level of fransport

—Turbulence driven by pressure gradients
* Infroduces more complex dependencies: B, |, ...
* Eddy size ~ toroidal Larmor radius

* Characterize energy confinement by a timescale

Fluctuation Amp. (dI/1.%)

T = Thermal Energy / Ppeq < Current < empirical

* Leads to overall thermal gain
Py P%v
ch B Pheat B PV/T

« Pressure.Current. H

0.8~

0.6

0.4

0.2

F|-E gps = 4.9 7]

—A— gys= 6.5

—— Qy5=3.7

0.0

[Gyro, Candy]

1 Amplitude
BES decreases
o EREEEe L gs current

0.5 0.6 0.7 0.8 0.9

Minor Radius (p)

Confinement efficiency (*/)

What is the best path? High pressure, current or confinement efficiency?
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Tokamak is Limited in Current and Pressure by Global MHD Modes

(q=4)
* Current in tokamak drives a field line twist

— Measure through safety factor, g < RB /I

_loroidal turns « kB

* Twist in field drives global MHD ‘kink’ mode 9=oloidal furns 1

— Leads to limit in current for given field
* Pressure also drives this distortion
— Increased field, B —tensions & stabilizes mode

[Troyon et al., PPCF 1985]
[Sykes and Wesson, NF 1985]
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Tokamak is Limited in Current and Pressure by Global MHD Modes

Y

« Magnetic islands also emerge at modest q —additional free energy as flux surfaces split

* Current in tokamak drives a field line twist
— Measure through safety factor, g < RB /I

* Twist in field drives global MHD ‘kink’ mode
— Leads to limit in current for given field
* Pressure also drives this distortion
— Increased field, B —tensions & stabilizes mode

as
15TaB, €207
- u QBMACL<IDMA v 53
a 8 g2
— w0 3
o 27 A o %p 5%
5 2 g = rak £
2 2] R &° € 3 % i
5o
qh’ A 0\‘}0 A vsgan .g §56
o 19 0 Mmdargive ‘ : S8
= >
2 c °
15 = \
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Tokamak is Limited in Current and Pressure by Global MHD Modes

* Current in tokamak drives a field line twist
— Measure through safety factor, g < RB /I

* Twist in field drives global MHD ‘kink’ mode
— Leads to limit in current for given field
* Pressure also drives this distorfion
— Increased field, B — tensions & stabilizes mode

* Magnetic islands also emerge at modest q

* ‘Ballooning’ limit to pressure is stabilized
by increased twist (current, I)

 Leads to Pressure limit ~ BI / R

= By =100

2[10 <P>

B1/Re

typically ~3-5

Q. Where and how to optimize in ) and q ?
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Ballooning

d (4 ’
/ " ~
" Stable "'
§>0

Pressure pushes field line through surface

b

6} I. . 5:-‘- /
| By limit 3/

s»1.67a
approximation

kink limit

0.4 0.6 0.8 1.0

1/q ~ Current

[Troyon et al., PPCF 1985]
[Sykes and Wesson, NF 1985]



Discussion: How Best to Optimize in 8, g and Confinement?

* Pulsed tokamaks optimize to high current & low q
— Current a primary driver of confinement - maximizes performance
— Sustainment not a concern for performance and burning plasma proof
v Potential to yield very high performance & self-heating

Q. High current poses a challenge for disruptions,
heat loads, and device siresses

- Steady state optimizes to high B & high confinement efficiency
— Improved plasma properties at reduced absolute parameters
— Lower current (higher g) desirable to reduce required
non-inductive current drive & recirculating power
v’ Reduced disruptivity, heat loads and devices stresses
Q. Can these benefits be realized?
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A Steady State Tokamak Sustains Current Non-Inductively

with Improved Confinement and Stability at Lower Current

* Sources of current:
~0 expensive

|sieady state = ﬂ |self-driven + (lNBI + Iwaves)

e Goal: High pressure + High self-driven current

Fusion power Steady-state & high gain
20 A "
> Inductive | °© The Advanced Tokamak optimizes profiles
215 Tokamak to improve stability & performance
§ 10l — Naturally generates a high self-driven i
s “Bootstrap current” at high pressure NS
£ F
3 05k a\ — Reduces the need for expensive £ b
Advanced \ current drive R N
Oz 07 05 08 1 < ol )

Normalized radius Baron von Miinchhausen
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High Pressure Gradient Leads to a Net ‘Bootstrap’ Current

Gyro-orbits drift due to non-uniform field lead to banana orbits

2. Currents due to 2 .'
neighbouring banana : N
orbits largely cancel :

3: More & faster particles
nearer the core lead to
net “banana current”

« VPressure/Current / '

Traces out banana
trajectory, width

1. Orbits tighter
where field

‘ ; : 5 stronger
lon gyro-motion N
4: Transferred to helical

bootstrap current by collisions

Utilize bootstrap to provide the plasma current g\

RJ Buttery/USBPO/2022 18 [Galeev, Sov. Phys. JETP 1968]



Neoclassical Theory of Bootstrap Current
Validated in Tokamak Edge ‘Pedestal’ Region

« Strong pressure gradients arise near edge
of tokamak plasma > ‘pedestal’

A

Pressure

— Magnetic & rotational shear suppress turbulence

* Drives strong bootstrap current

Pedestal =—=»

Edge
transport
barrier

Radius

dp/dr

oo A

J .
' BU(1+0.9,/vj)

N Current density:

EqFIT Using
NC Model

LIBEAM

~ i

| ]
| ]
| ]
| 1aoese ]

Experimental validation on DIII-D
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Combine Bootstrap with Auxiliary Current Drive in Steady State Tokamak

* Bootsirap fraction: fps < p/I* o« CpsBnqos Radio Frequency Current Drive

+ Additional current drive from RF heating Wave accelerates electrons
preferentially decreasing their collisionality

Vph = (D/k”

— Requires suitable population > high T

— Collisions scatter electrons, reducing current E
* Requires low density

PcpT 9 PcpBnB

= fep X D3 — Collisional asymmetry drives most @ —
niR n current, not momentum from wave! v
* Solve for current drive fzs + f-p = 1: [Fisch FST 2014]
3 p3
Qep Prus 1 Ccp ByB® €pyand B always help!
cD

Pcp X (1—CpsBnaos) (m/I)?

More bootsirap removes need for Lower density - higher fcp
current drive at high g5 (lower current) Higher current raises Q as Py~ B%iI*B?

Alternate paths to steady state through bootstrap or current drive



Recap: Higher Beta or Higher Current?

- Efficient fusion requires high Q
* Both heating and current sustainment have two optimization paths

. By H B3 R® . .
—Heating power €& Qg « — - through High By H or High I; (lowq)

—Current drive power ¢ q., > High B or High I directions

High bootstrap path ' ' Efficient current drive path
Challenges Challenges
» High B stability? » Low safety factor stability?
+ Confinement? * Current drive technique?

What is the best path? High pressure, current or confinement efficiency?
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

- Stability
« Transport o\ -modes
dissipated
» Pedestal \ by wall bad

* Energetic particles

turbulent
eddy twisted
& stabilized

* Pilot power plant projection and benefits

* Research needs

RJ Buttery/USBPO/2022 22



Bn Limiting Global MHD Modes Can Be Stabilized by Device Wall

» Pressure driven kink displaces
magnetic flux about the plasma

Enables stable operation

above no-wall limit
» Conducting wall permits slow kink soesz1 1urezs
growth as flux diffuses through it ) P! .
* Rotating mode sees ideal wall g

@ )I I jg@) — Also mode gives energy fo particles al

with rotational orbit resonances

Nefvvean fenane
No-Wall Limit (2.47)

R T R R TR Y
Time (ms)
* Magnetic feedback can

. [Garofalo PoP 2004]
control any residual mode

How do we increase wall stabilization of this pressure limit?
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Advanced Tokamak Benefits from Synergy of

Shaping and Broad Profiles at High By

» Shaping raises ideal MHD limits
— Increases current carrying capacity
— Extends eigen-structure into wall

* Broader pressure profile places pressure
gradients in strong magnetic shear region

» Broader current displaces mode further into the wall
— Effectively current perturbation gets closer to wall
— Greafer than additive benefit

* Higher B increases Shafranov shift (axis moves outward)
— Moves mode further to wall & raises shear

Effects combine to raise pressure in core by factor 5
—Self-consistently generates bootstrap current
aligned with required profiles for stability

RJ Buttery/USBPO/2022 24
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

« Stability
* Transport \ -modes
dissipated
» Pedestal \ by wall bad

* Energetic particles

turbulent
eddy twisted
& stabilized

* Pilot power plant projection and benefits

* Research needs
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Broad Profiles Also Improve Energy Confinement

« Particle drifts interact with low frequency electromagnetic >  OpEEm—— = .
. . opens redicred Iranspoil -
waves causing instabilities and turbulence :; 35 -E,ec,r'on heqfedrfgime qu'!!YaE-
. . . . . 2 30 F | elections | 1%
» With peaked profiles, field lines align on bad ?g @ 5 vl Trq’r;Isporf‘l(ov;_ S
curvature side > eddies grow radially ~ X T by A\ ¢ ofoff-axis| o
Wi 5
Pl / current{ o
" . . S =2

* Broad current profile drives negative local shear £°° \ 2
s M
— Even though weak average shear -§ F Pparticles =

— Eddies twist info good curvature region S Spe—t T S

o b 4

— Leads to turbulence stabilization é 0 o m

H IS G — d

— Accentuated by Shafranov shift: " Coment Deposifion s
 Pressure further 1.0 Magnetic

. . shear
raises local shear 95 I

k Bifurcation to high
pressure state

0.5

enc

Turbul

0.

Broad profiles and high B play key role in stabilizing turbulence

=)




Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

« Stability
* Transport X\ “modes
dissipated
* Pedestal \ by wall bad

* Energetic particles

turbulent
eddy twisted
& stabilized

* Pilot power plant projection and benefits

* Research needs
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Pedestal Model Projects Strong Shaping Raises Performance

» Peeling-ballooning instability couples
— Fine scale ripple-like interchange
— Low order peel off of edge

/,4

* Modes well coupled at low shape

/» Ballooning
5

/ 0\\\¢0 X% H.-Mode

 High shaping see drives separate
in parameter space
— Opens valley in pedestal stability
— Sweet spots at higher pressure & density
* More elongation moves nose right

Pedestal Pressure (kra)

0 2 4 6 8
Pedestal Density (10°m?)

» Super H-Mode discovered on DIII-D
— Record Bn=3.1 with a quiescent edge

High shaping raises performance and density !

RJ Buttery/USBPO/2022 28 [Solomon PRL 2014, Snyder NF 2015]



Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

* Stability
* Transport =\ ~modes
dissipated
» Pedestal \ by wall bad

* Energetic particles

turbulent
eddy twisted
& stabilized

* Pilot power plant projection and benefits

* Research needs
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Broad Current Profile Ensures Fusion Products Stay Confined

- Potential for Alfvénic resonances in FlucfuaﬁoTns Simulation
weak magnetic shear regions ¥ ()
— Overlapping modes lead to transport 5
%
2
2 -
o
Weak “ Energetic particles
Neutron rate A L
o shear ] © 4 W/N Deficit drive Alfvénic resonances
. 2 / ‘4m Defici
Ta . Fast ion j 2 W«
o i R . H 2 2
9 / gradient | ¢
:> 6' | % measured neutron rate ;
2 ) | &'s 27 29 "1 nigh qin core G, 0t large N
o 4 | time [s) . o | eliminates TAEs ~ Weakens the |
g\ ] * Broaden current profile 5 RSAE drve
g 1 — Moves weak shear out & £'7 4 '
T o ] =2 i 3 N
o oaorma%':‘edmr?o?radmga 10 g 1o messuecsgon e ..ﬁ e \~ ‘__,,,./J
§ o ron feke . ofd
E No Deficitf 4 = o |
1 52 53 0.0 025 0.50 0.75 1.0

time [¢) normalized radius, p
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Current Broadening Demonstrated to Lead to Improved H and By

in DIII-D with Off Axis Beams

Fast ion confinement
raised 25%

Key: Raise pgmin to region
of reduced EP gradient

Neutron Ratio

#180619 On-axis Beams (Reference)

10g,0(P"?)
-25

#180625 Off-axis Beams + Core ECCD

Reduced AEs —,

1 T B = ]
,g. improved fast-ion confinement 1

08 {
06, 1
04 3

L0 —— DTSR IS,
500

Time (ms)
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Accessed new regimes with 15% higher py

oo 2.6 |- Previous Beams (squares)

Q New Off-axis Beams (triangles) A

= 24} ]
5 a A
£ 22f O 3
£ AQ A ]
€ 20 AN Iﬂ:ﬁj

S g

g 1.

3 B o ]
© 1.6[Survey of reverse shear, q_ >2, B,=2.0 T, q,,<6.5 1

22 24 2.6 28 3.0 3.2
Normalized Beta (B,)

Improved fast-ion transport modeling
Neutron Rate

1.0

TRANSP

08 (classical)

0.6

(x10'% s7)

04p : "Measured

ALPHA Model
Iti)

0.0
500 1000 1500 2000 2500
Time (ms)

[Collins IAEA 2020]



Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

* Stability Enables high performance
* Transport at lower current, reducing
. Pedestal heat loads, recirculating

- Energetic particles power & device stress

* Pilot power plant projection and benefits

* Research needs
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Potential of Advanced Tokamak Approach to Steady State

Demonstrated in DIII-D

* Lower current dramatically * Broad current profile delivers
improves stability high stability & confinement
—Key: safety factor — Density at Greenwald value
—No dependence on By with high bootstrap fraction
DIlI-D DIII-D #176440
100%
Disruptivity per shot
0% i Disruption
free
I ‘ - High confinement, density,
0% 3 4 G e Oy pett (krad/s) 8? bootstrap, low rotation
High t peak Low s
curgr’ent Qo5 [otpeckp) current p TER prediction [Chrystal. PoP 2017)

1 2 3 3
Time (s)

[Garofalo FED 2014] RJ Buttery/USBPO/2022 33 [Huang NF 2020]



Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

* Pilot power plant projection and benefits
—Key trends in optimization & atftractive solutions

* Research needs
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Based on Steady State Concepts Reactor Analytics
Show a More Efficient & Robust Path is Possible

» Recall fusion power: 5
Pp,s < Pressure’ R® « By°“B*R3/q?

—Raising By & B willreduce required device size, R, and still leave net electric

Radius (m)
- Start from EU ‘stepladder’ DEMO ° : ! ° ¢
_ Adiust R 10 Got P, = 200MW for given By & B
Puet = Nen(Prus + Pheat) — Pplant — Pcp/Mep
— Rapid decrease in device size possible... s
lower Peiec, higher B, higher By & less CD 7T Pu=4 higher By
7T Bn=4.5 & less CD

7T Bn=4.5 half CD
8T Bn=4.5 half CD

< 1/10" volume of 9m EU-DEMO!

Smaller cheaper devices within reach

RJ Buttery/USBPO/2022 35



Used Integrated Physics Model to Design Device that

Proves Net Electric Viability and Conducts Long Pulse Nuclear Testing

9

* Goal: Prove key principles at low capital cost
— Net electricity — Nuclear materials - Breeding

* Constraints:

Target Parameters Rationale

Net electric (200MW) Show fusion reactors can power themselves
Compact scale: 3-6m, 5-9T Affordable

High booftstrap fraction (90%) Reduce recirculating power & scale
Tolerable/significant neutronload  Nuclear testing mission: materials, breeding
Tolerable divertor challenge Viable target for diverfor research

Set tractable challenges where we expect progress in the next few years

First predictive approach to reactor design!

RJ Buttery/USBPO/2022 36



Pilot Plant Concept Drives Needs to

Minimize Power Losses At Every Stage
6T, GA Systems Code

* Large devices make plenty of fusion Premon E'eaa'lffé o
to heat plasma & power current drive X1.25
H ini H Pacea Pgreciamen
* Smaller devices must minimize 2 176MW o T ISoMw
N TF J
losses at every step Prear
— Otherwise no electricity left 2
— Or they might melf! Pruson
882MW
Thermal

+ Key is to minimize recirculating power [ Vv
— Steady State approach

— Efficient technology
\
882MW | ¢
. N Fusion Puer
Simulations explored how... \ Par b 04 200MW

..with full physics models e

PEOP
29MW

RJ Buttery



FASTRAN Integrated Simulation Suite Provides Tool To

Validate Physics Models & Project Performance

Turbulent Transport
TGLF

T,(keV)

Pedesta_l>
Top

O =N wWwHOO N

00 02 04 06 08 1.0
P

Off-axis Current Drive
BEAM

TOQ+KBM

Peeling-Ballooning
MHD stability

ELITE

Ideal MHD Stability
DCON

Measured Pedestal Height (Protped. kPa)

Edge Pedestal

EPED1 Model Compared to DIII-D ITER Steady-State

N
3

@ DIID ITER Steady-State "

o
N\

3
N

@

°

5 10 15
EPED1 Predicted Pedestal Height (kPa)

Equilibrium/Loop Voltage
EFIT

60 Experiment, analysis
S fime period=t=4.4 s
Ea0
3
> 20} FASTRAN prediction of
§ loop voltage at
s t=infinity (=32 mV)

0

00 02 04 06 08 1.0
P

[Park Comp Phys Com 2017]



Higher Field is Highly Levering to Confinement

7Tvs 6T,Ip=9.5 MA, n Pd/n_ =0.9
Stored Energy (MJ)

300
* Higher field improves core confinement =—» 2504 Total
— From gyrokinetic treatment 5‘//
of core turbulence 20 X/___..———-
150

100 4 Pedestal

50+
O v -Y -
25 50 75 100
" A R Proco (MW)
Benefits not captured by simple scaling law AR

approach - comes from physics treatment

RJ Buttery/USBPO/2022 39 [Buttery NF 2021]



Increasing Density Enables More Bootstrap & Less CD Power

» Density gradients drive bootstrap current
more efficiently than temperature gradients*

— For given B, higher density raises booftstrap
fraction modestly: fps from 70% to 90%

» Decreases auxiliary current drive: 30% to 10%

—Scope to raise Bn & net electric power \
with fixed auxiliary power

Requires density at pedestal to be close to the
empirical tokamak ‘Greenwald’ density limit

RJ Buttery/USBPO/2022 40

*Temperature effect
depends on flows & orbits

Power (MW)

200 Pner

100

Density normalized to current

Pu/cp

Fix BN =3.5
0.80 085 090 0.95 1.00
Neped/Mew




Steady State Approach Provides
High Confinement Reactor Solutions at 6-7T with 200MWe

* Higher density, field & efficiencies = gy becomes highly levering to net electricity

o Net & Heating Power (Mw) y Net Electric Power (Mw) -
7T 17\ N\ | 9.4 8.1
S 105 \\“"% % a 49 65
s PNEr g 100 By 42 36
5 20 g sl N % He 13 1.5
2 Ph/co = 90 2 Q 10 17
a / 8sfe \ \\ Pheat 84 38
FiX Nepea/New = 0.9 g0 LAl fully non:inductive P 873 658

o 3.0 32 34 36 3.8 4.0 0.80 0.85 0.90 0.95 1.0 fus

. / ot Neut. 23 18

R=4m, nry =ncp = 04

* Family of fully non-inductive solutions at 4m radius ng® /ngw=1, 200MWe

Conventional (6T) & high temperature superconductor (7T+) solutions
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Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinement
— Enables more compact and lower current approach

» Higher pressure & density increase bootstrap
— 80-90% bootstrap current - reduce recirculating power

RJ Buttery/USBPO/2022 42

Bootstrap

J

NB J Helicon

00 02 04 06 08 10
Normalized radius



Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinement

— Enables more compact and lower current approach

* Higher pressure & density increase bootstrap

— 80-90% booftstrap current — reduce recirculating power
* Lower current improves stability =

— Removes low order surfaces that tear and disrupt
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Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinemer 10
— Enables more compact and lower current approach

Ideal MHD ‘kink’

pressure limit
(wall stabilized)

* Higher pressure & density increase bootstrap 81
— 80-90% booftstrap current — reduce recirculating power

» Lower current improves stability =
— Removes low order surfaces that tear and disrupt
— High pwall-stabilized even with high wall distance

Bx limit

41 C-AT By range

No wall stability limit

114 1j5 1i6 117 1;8
ayanla
Wall : Plasma distance ratio
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Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinemer 10
— Enables more compact and lower current approach

Ideal MHD ‘kink’

pressure limit
(wall stabilized)

* Higher pressure & density increase bootstrap 81
— 80-90% booftstrap current — reduce recirculating power

» Lower current improves stability =
— Removes low order surfaces that fear and disrupt
— High B wall-stabilized even with high wall distance 41 C-AT gyrange

»>Reduced disruptivity, stresses and device risk No wall stability imit

Bx limit

114 1j5 1t6 117 1;8
ayanla
Wall : Plasma distance ratio
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Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinement
— Enables more compact and lower current approach

| er | 71

* Higher pressure & density increase bootstrap

— 80-90% booftstrap current — reduce recirculating power ! i LG

q 49 6.5

* Lower current improves stability & disruptions 2 B 42 346
— Reduced disruptivity, stresses and device risk Hos 13 15

* Requires less gross fusion performance per MWe Q 10 17
— Decreases neutron loads at wall Pheat 84 38
Prus 873 658

eut. 23 1.8

R=4m, nry =ncp = 04
2% new=1, 200MWe
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Broad Profiles, Shaping & High g Lead to Improved Stability & Heat Loads

» Broad profiles and higher field raise energy confinement
— Enables more compact and lower current approach PB '

Oy
'0
/ »
\

3
)

* Higher pressure & density increase bootstrap
— 80-90% booftstrap current — reduce recirculating power

%
?

1 1,.-"‘

* Lower current improves stability & disruptions 2 PB, H
— Reduced disruptivity, stresses and device risk 9 =N R H
* Requires less gross fusion performance per MWe .;.‘ :..
QQ;‘O / \.:.G? /

— Decreases neutron loads at walll :
.‘
*

» Lower fusion power and current reduce heat fluxes
— Modest core radiation needed to reach ITER-like heat fluxes
« Still enough power through plasma edge to maintain ‘H-mode
— A 24/7 fusion power plant will need to go further i | o | o
q) 85 85 20%

But key challenges remain... a | 18 | 18 | 50%

-
N\

d N=2 divertors Pertor
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Talk Outline - Path to a Compact Fusion Pilot Plant

* Paths to an efficient & compact fusion tokamak
—Plasma configurations, limits, pulsed & steady state

* The Steady State optimization
—Shaping, broad profiles & high B raise performance

* Pilot power plant projection and benefits
—Key trends in optimization & atftractive solutions

* Research needs
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Key Plasma Physics Challenges Remain

« Critical plasm hysi hallen Position facilities above physics
Critical plasma physics challenges phase transitions to project FPP:
— Validate core physics solution in reactor regimes A
& relevant sources: stability, fransport, EP, pedestal {E.9. furbulence EPP
— Scope the limits of density, pressure, confinement .‘;’ ibrOOdemng *’__I}
—24/7 power handling solution compatible with core 2 | Past Test
— Compatibility with wall materials @ 1 Develop
1 o
— Control of transients (disruptions, ELMs) i solutions
 Issues common to all future concepts é

Controlling variable (Heat Flux)
* Requires exploration in relevant physics regimes
—Upgrade and exploit flexibility of present facilities to rapidly deliver answers
— Execute key tests at high field (ITER, SPARC, DTT, BEST)
—Theory advances and model based understanding crifical fo path

DIII-D, SPARC & NSTX-U will confront these challenges
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Compact Approach Requires Advanced Engineering & Technology

* Requires advanced bucking approach GA
to deal with forces

— 'Bucks’ toroidal field coil forces off solenoid
& cenftral plug to cancel out stress by >50%

Systems
Code

%
(]
o
2
i
)
32
[]
=
(]
-

R(m)

RJ Buttery/USBPO/2022 50 [*Stambaugh FST 2011]



Compact Approach Requires Advanced Engineering & Technology

Vertical change out scheme in
* Requires advanced bucking approach Japanese SN design (C-AT is DN)
to deal with forces @
— 'Bucks’ toroidal field coil forces off solenoid
& cenftral plug to cancel out stress by >50%

Control coils

Blanket
module

» High Temperature Superconductors
enables demountability

— Permits changes out for nuclear materials mission el

— Raises performance and increases duty cycle @

Blanket segment

* Broad technology program (CPP plan)

— Materials, breeding, power extraction, RF,
reactor design, licensing, safety, etc.

—ITER plays key role in reactor scale expertise

Aggressive technology program required Overorcassts
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Time is of the Essence

* Need to rapidly address science and technology questions
— “what we’ll know soon” —don’'t wait for fantasy solutions
— Target research programs for near ferm answers

* Resolution of the confinement concept will emerge
from forthcoming research on near term facilities
— Partnership, complementarity, goal-orientation
— Innovation, scientific foundation & models are key

I would say...

“Steady state concept confers key advantages
in lowering required performance, disrupfivity,
heat flux and device stress.”

...but we will all embrace what obviously works
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Time is of the Essence

* Need to rapidly address science and technology questions
— “what we’ll know soon” —don’'t wait for fantasy solutions
— Target research programs for near ferm answers

* Resolution of the confinement concept will emerge
from forthcoming research on near term facilities
— Partnership, complementarity, goal-orientation
— Innovation, scientific foundation & models are key

« Vital fo invest in required technology programs
and start serious reactor design studies

— Critical fo engage private sector, government
too slow for major new facilities

— Staggered decision making design process

An exciting time - our research can resolve
critical solutions to make fusion energy happen
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