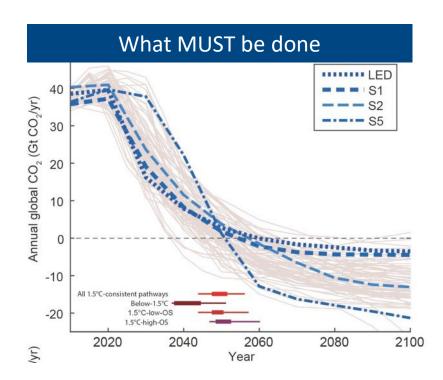
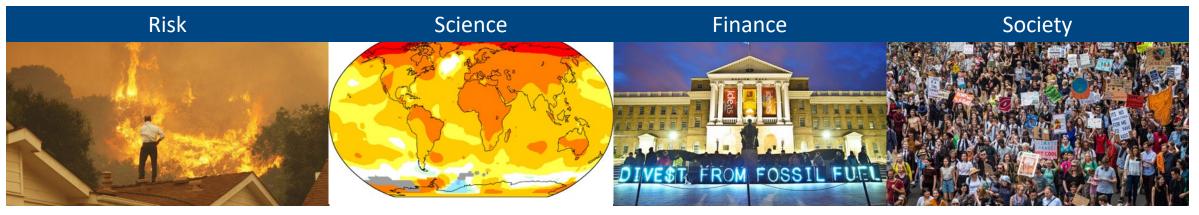


SPARC, ARC and the highfield path to burning plasmas and commercial fusion energy

Dennis Whyte

Director, MIT Plasma Science & Fusion Center

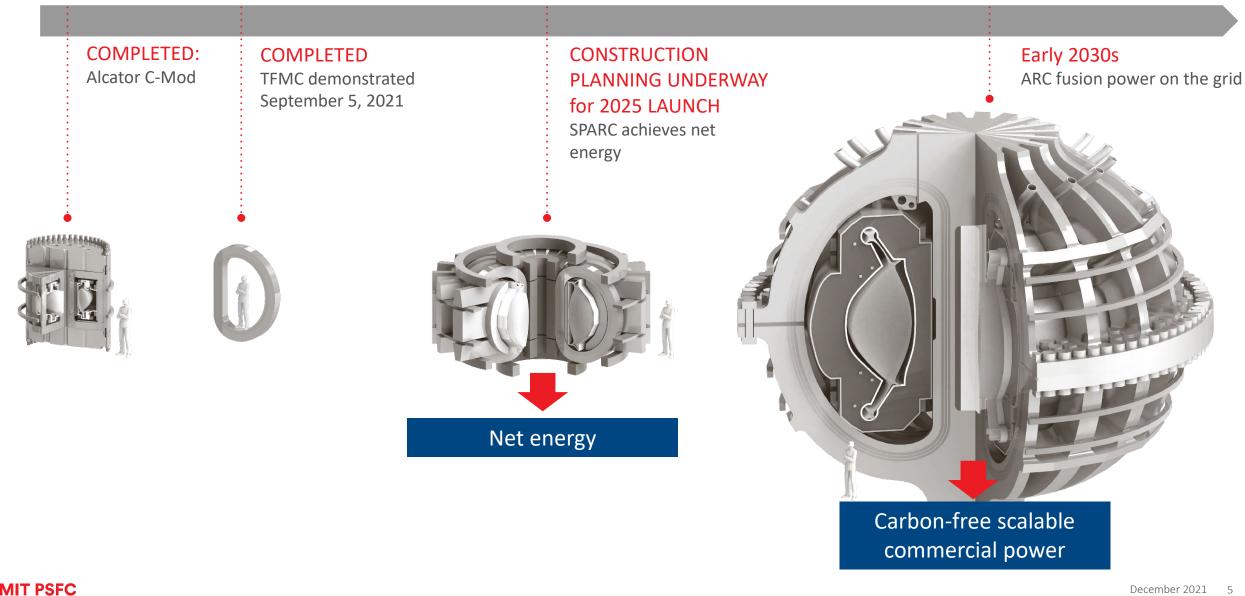

Representing my colleagues at Commonwealth Fusion Systems, MIT-PFSC and our many collaborators

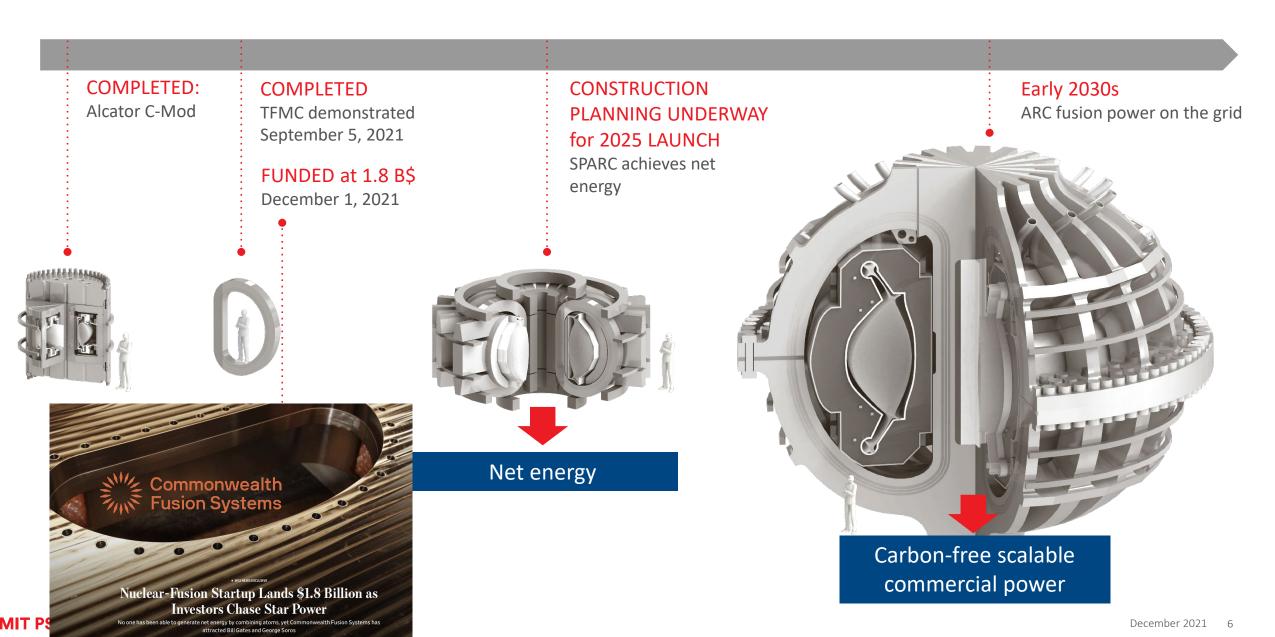

Outline

- The high field burning plasma plan & the energy transition
- SPARC and its mission
- The public-private ecosystem
- ARC as a Fusion Pilot Plant platform

Decarbonization is the largest trend this century

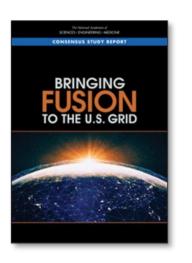
- The verdict is unanimous, we need to decarbonize to netzero by 2050.
- Climate sets the timeline, not technology.
- The World is going to do what it takes.
- Climate / Sustainability / Energy Transition require a massive shift in how we generate and consume energy
- Decarbonization will transform ~5-6% of global GDP




Burning Plasmas are a necessary but insufficient part of delivering fusion energy to meet decarbonization goals

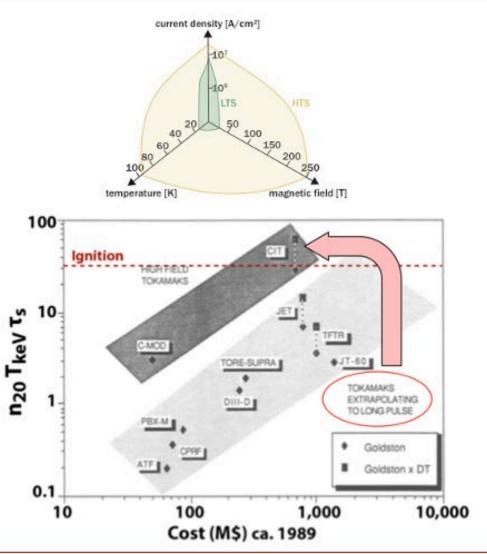
- Net energy gain commensurate with commercialization → physics tells us we must obtain burning plasma self-heating regime
 - $Q_p > 10$ for D-T power plant, burning plasma regime $Q_p > 5$
- Yet the urgency for decarbonization has completely modified the context and drive for obtaining burning plasma, which must have
 - Timeline commensurate with commercialization
 - Approach with obvious and relatively small extrapolation to commercial entity in terms of confinement scheme
 - Altered risk assumptions: will accept/require parallel development paths
- If these are met, more resources will arrive to support BP mission (not a zero sum game)
- This reality has fundamentally changed the BP strategy. A single collective BP experiment that does not meet these criteria is insufficient

Commercial fusion risk retirement in concrete steps


Commercial fusion risk retirement in concrete steps

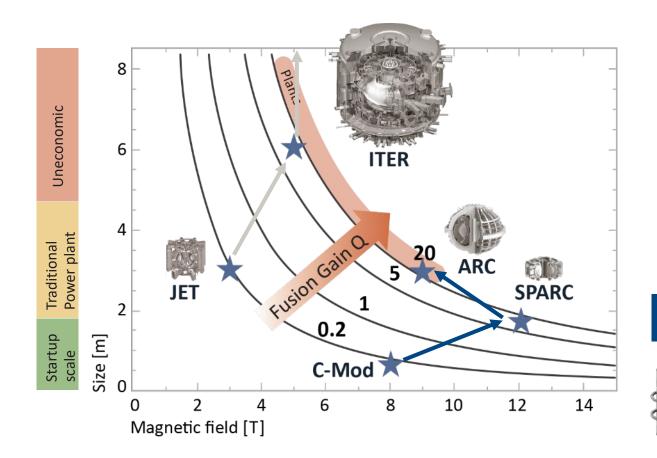
SPARC ~ Nov 15 2021

Fundamentally aligned with NAS Report, FESAC LRP and US BPO



 National Academies of Sciences, Engineering, and Medicine 2021.
 Bringing Fusion to the U.S. Grid.
 Washington, DC: The National Academies Press.
 https://doi.org/10.17226/25991.

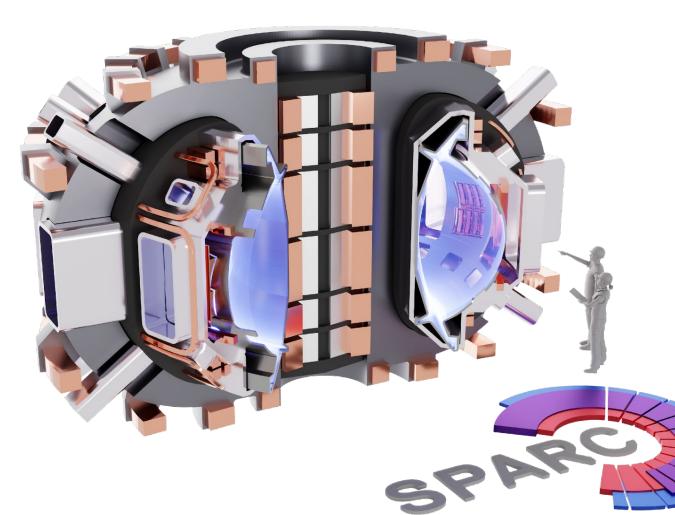
"Phase 1a: "Phase 1b: Capture "Phase 2,3: Production of and conversion into Production of net fusion power for one/ many fusion plasma electricity" environmental cycles " energy gain"


The Case for High Field (APS 2017)

Issue	Scaling		Issue	Scaling	
Power density	B ⁴		Density (tokamak)	R ⁻¹ B ¹	•
Confinement (generic)	R ² B ²		Density (stellarator)	$\beta B^{2.5}$ (burning)	;;
commentent (generic)	K D	0	Heat exhaust: min. fz	R ^{1.3} B ^{0.9}	
Confinement (tokamak)	$\frac{R^{2.7} B^{3.5}}{R^{3.1} B^{2.1}} (H_{98})$		Heat exhaust: q		
Confinement	R ^{2.8} B ^{2.1}		Runaway e- amp.	$\exp(\mathbf{R}^{0.28} / \mathbf{B}^{0.3})$;;;
(stellarator)	K D	Ĩ	Synchrotron: runaways	B ²	
Gain	R ^{2-3.1} B ^{4-5.5}		Synchrotron:thermal	~B ^{1.5}	
Stable pedestal	$\sim \beta_N B^2$		TAE	n∼B, v _A ∼B	۲

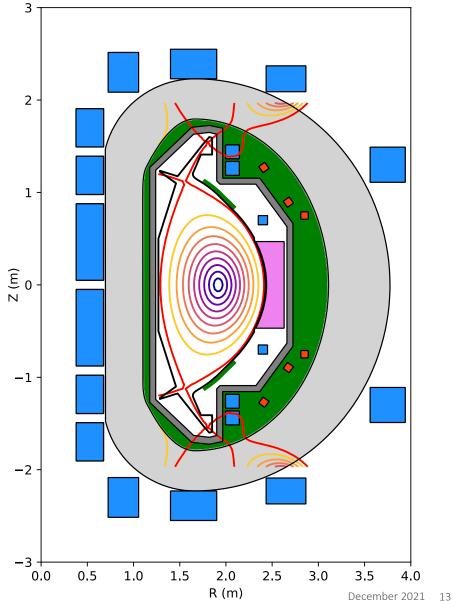
Шiī

High-field magnets open new pathway We have been executing this plan for 3 years.



Outline

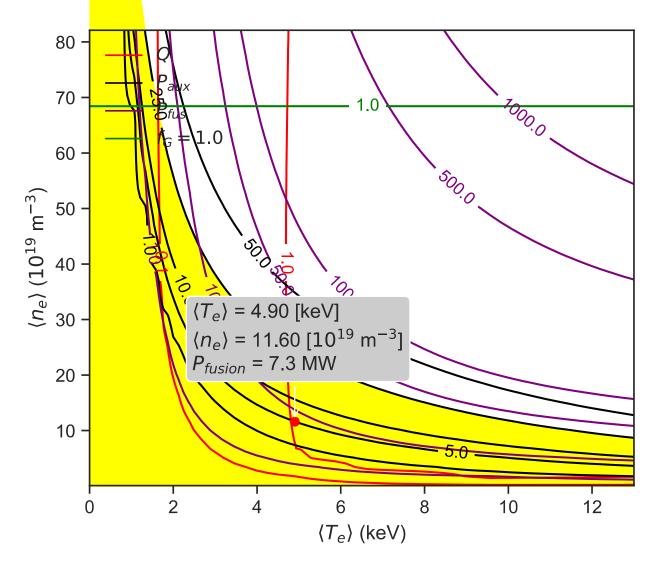
- The high field burning plasma plan & the energy transition
- SPARC and its mission
- The public-private ecosystem
- ARC as a Fusion Pilot Plant platform


SPARC was designed and construction started at risk for speed

- Magnet development run in parallel
- Applied agile practices from industries like space – systematic de-risking
- Currently at >30% design completion
- Long-lead procurement begun
- Site, licensing settled, build started

SPARC design and operations are pushed by the need to inform ARC

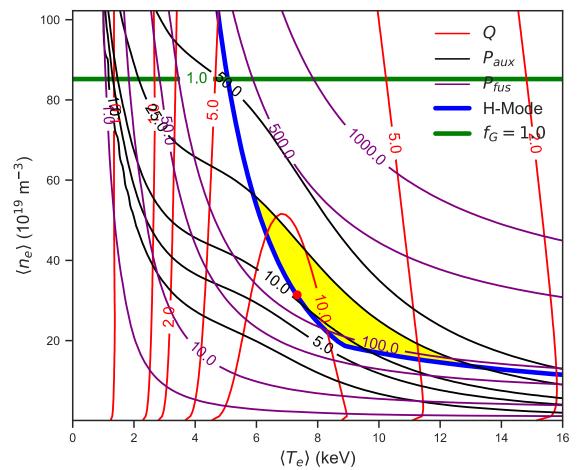
- Get early DT results in L-mode
- H-mode confinement data at high field, including power threshold
- Burning plasma physics including alpha interactions
 - P. Rodriguez-Fernandez et al APS 2021.
- Disruptivity at ARC relevant parameters
 - R. Sweeney et al APS 2021
- Passive runaway electron mitigation
 - D. Garnier et al APS 2021.
- Gas fueling efficiency at high opacity
- Diagnostics and control for burning plasmas
- Heat removal via an X-point target divertor configuration (see right)



Q > 1 is achievable on SPARC in L-mode at low power and low plasma current

- SPARC is designed to achieve Q=11 in standard H-mode, but it can also achieve Q>1 in a much simpler L-mode plasma
 - L-mode (no ELMs)
 - Lower elongation (easier vertical control)
 - Lower plasma current (less disruptive)
 - Low power (reduced neutron activation)
- Same assumptions as in [Creely JPP] including a 50-50 DT mix
- Q>1 plasmas can be achieved rapidly and without much neutron activation, such that invessel maintenance is possible

SPARC Q>1 L	mode Pla	asma
B ₀	12.2	Т
l _p	7.0	MA
q*	3.3	
К _а	1.6	$(\kappa_{sep} = 1.8)$
< T _e >	4.9	keV
<n<sub>e></n<sub>	1.2	10 ²⁰ m ⁻³
f _g	0.2	
H ₈₉	1.0	
P _{ohmic}	2.2	MW
P rf,coupled,operating	4.9	MW
P _{fus}	7.3	MW
Q	1.0	

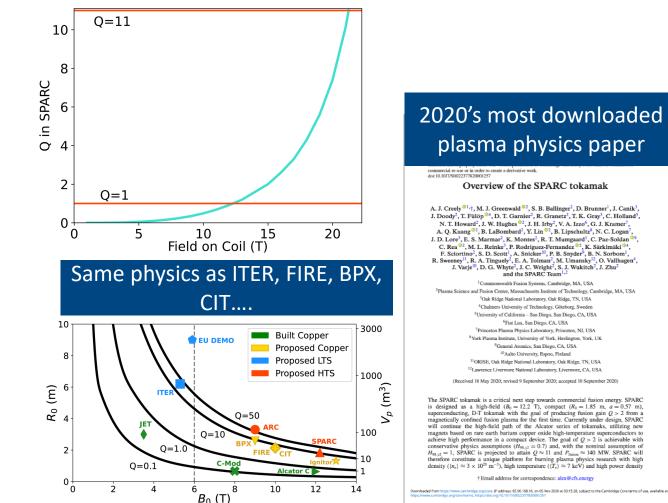

Q > 1 is achievable on SPARC in L-mode at low power and low plasma current

SPARC Q>1 L-r	SPARC Q>1 L-mode Plasma		
B ₀	12.2	Т	
I _p	7.0	MA	
q *	3.3		
<i>K</i> a	1.6	($\kappa_{sep} = 1.8$)	
<t<sub>e></t<sub>	4.9	keV	
<n<sub>e></n<sub>	1.2	10 ²⁰ m ⁻³	
f _g	0.2		
H ₈₉	1.0		
P _{ohmic}	2.2	MW	
Prf,coupled,operating	4.9	MW	
P _{fus}	7.3	MW	
Q	1.0		

SPARC H-mode window will explore a range of burning plasma regimes directly relevant to ARC

• In the second and third campaigns, SPARC will ramp to high performance relevant to ARC

MIT PSFC

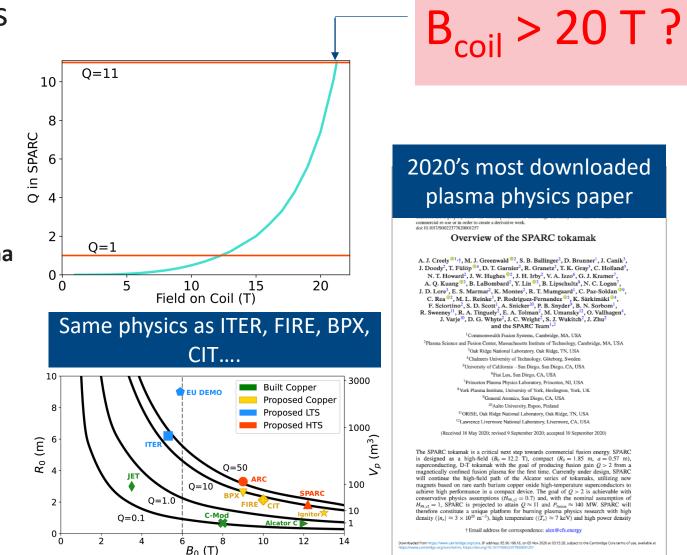

B ₀	12.2	Т
l _p	8.7	MA
q *	3.05	(q ₉₅ = 3.4)
<i>K</i> a	1.75	(κ_{sep} = 2.0)
<t<sub>e></t<sub>	6 - 13	keV
<n<sub>e></n<sub>	1.4 - 5.5	10 ²⁰ m ⁻³
f _g	0.17 – 0.65	
β _N	0.8 - 1.5	m∙T/MA
$P_{sep}B_{0}/R_{0}n_{e,20}^{2}$	9 - 126	MW·T·m⁵
P _{fus}	80 – 150 *	MW
Q	3.4 - 11.0	

* Fusion power limited by magnet heating

SPARC is an ITER equivalent burning plasma machine

- Design validated using the ITER tools
- Q=11 @ H=1; long-legged divertor
- JPP peer-reviewed physics papers

SPARC will give the burning plasma data the world needs – but in a commercially relevant platform and context



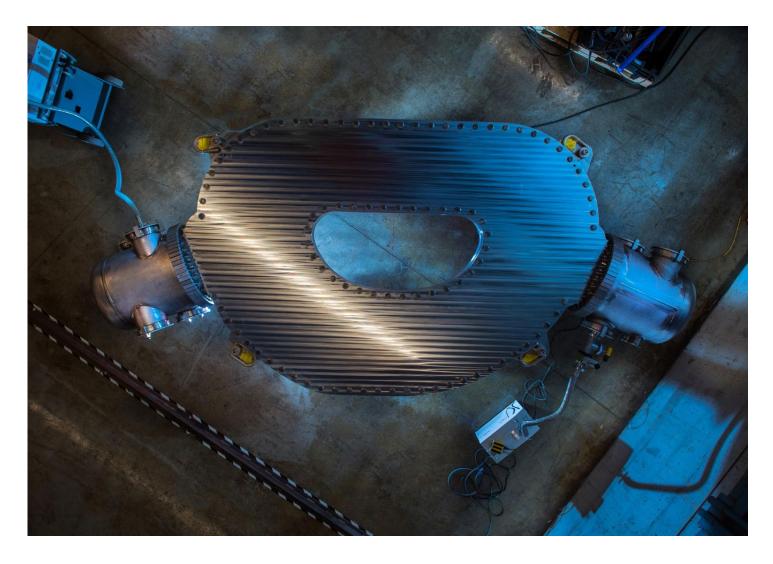
SPARC is an ITER equivalent burning plasma machine

- Design validated using the ITER tools
- Q=11 @ H=1; long-legged divertor
- JPP peer-reviewed physics papers

"Reading these papers gives me the sense that **they're going to have the controlled thermonuclear fusion plasma** that we all dream about," said Cary Forest, a physicist at the University of Wisconsin — *The New York Times*

SPARC will give the burning plasma data the world needs – in a commercially relevant platform

Developing the HTS was part of an integrated strategy that itself informed our magnet development



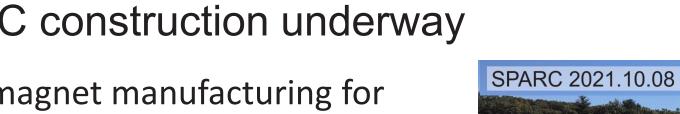
- Must be based on robust science and engineering
- Must be eventually manufacturable at scale and economically
- Don't leave innovations on the table, yet know when knowledge was good enough → parallel developments
- Build-test-understand cycle as fast as possible

We quickly constructed a large integrated coil test stand in the Alcator C-Mod power room

We have built and tested the non-insulated high-field magnet

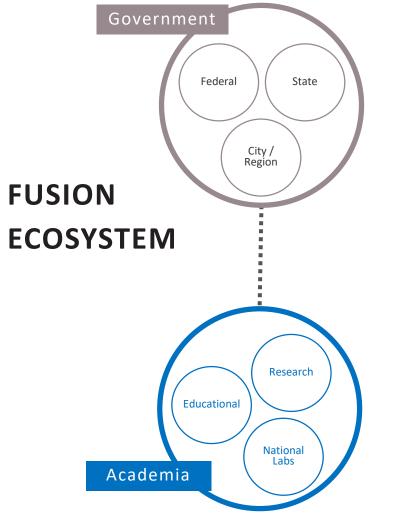
- Fully representative of SPARC coil operation
- 20T on coil, well beyond what LTS can do
- Largest HTS magnet in the world by a factor of 100x
 - Stored energy: 110 MJ
 - Mass: 9265 kg
 - HTS tape in coil: 267 km
 - Size: ~ 2 meters tall
- Modular: Each of 16 pancake is world's largest HTS magnet
- Successfully tested: September 5, 2021

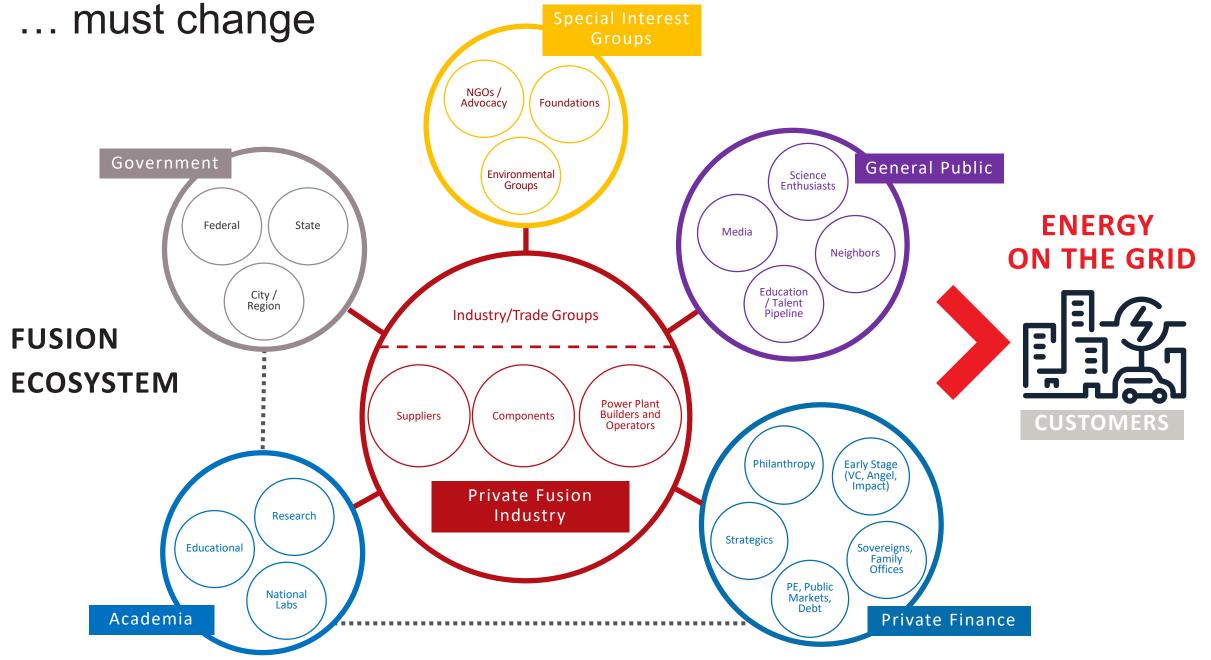
While developomg scalable magnet manufacturing


- Magnets produced with proprietary techniques
- Magnet is composed of 16 layers to aid in low cost manufacturing and modularity
- Process built for scale and speed

SPARC construction underway

- Host magnet manufacturing for both SPARC and ARC
- Will be an entire CFS campus eventually housing >1000 people + MIT scientists and students + collaborators
- NRC concurs this will be dealt with by state of MA, an agreement state
 - State agreed to license similar to a cancer treatment center




Outline

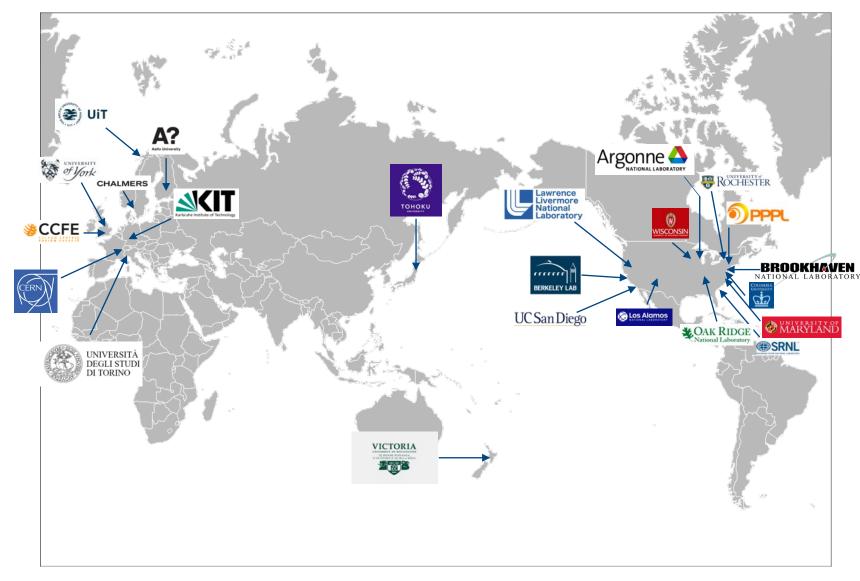
- The high field burning plasma plan & the energy transition
- SPARC and its mission
- The public-private ecosystem
- ARC as a Fusion Pilot Plant platform

The fusion ecosystem a few years ago

- Just as the context of bringing commercial fusion energy changed our technology and science strategy, it also had to affect our organizational strategy
- While there were external forcing functions, in the end we committed as a team to a new way to accomplish our collective goals.

MIT-CFS partnership

- Leverages existing MIT infrastructure people, expertise, space
- Leverages CFS expertise in supply chain, finance, manufacturing,
- Currently have over 275 people working on this project (CFS+MIT)
- The best from both academia and industry working together
- Flexible invention and licensing agreement, expedited tech-transfer



Part of a growing fusion industry

- Deliver products that reflect the fusion value proposition
- They can be extremely capable organizations
 - Tight focus on deliverables and milestones
 - With less \$ (now) and different resources than gov't
 - High-growth potential
- Academic researchers couple to such companies in all applied disciplines

Private fusion is an organizational forcing function

- CFS/MIT/SPARC has >50 collaborations, >40 institutions, >10 countries
- Includes National Labs, universities, governmental orgs, private companies
- 10 INFUSE awards, premier
 FES PPP program, most of any company
- ARPA-E awards as prime, subrecipient, industrial partner

Private fusion add speed...and resources w/ success!

general fusion

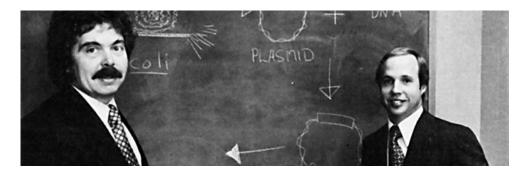


Norman

TFMC

Plasma Injector

ST-40


Proven capability to deliver big hardware quickly

How do we work together?

We each do what we're good at

Public Programs, Academia	Private Industry		
Basic science	Industrial engineering		
Test stands and user facilities	Scaling		
Training and education	Interfacing with customers and suppliers		
Simulation and validation	Robust supply chain		
Cross-cutting research	At-risk development		
Community toolsets	Commercial regulation		
Foundations through peer-review	Systems integration		

This has all happened before

- ~1000 biotechs in Boston area
- Dominant technology in MIT cluster
- Natural evolution of industry: pie gets bigger

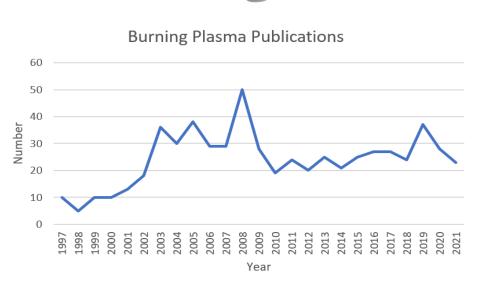
This has all happened before

The New York Times

July 8, 2011

Atlantis Lifts Off for Last Space Shuttle Mission

- NASA built low-Earth orbit industry at fractional cost
- Used PPPs w/ milestone-based cost share, risk sharing
- NASA: "We would encourage ...other Government agencies to consider adopting similar approaches where possible."
- Fusion version of COTS has been passed into law


Outline

- The high field burning plasma plan & the energy transition
- SPARC and its mission
- The public-private ecosystem
- ARC as a Fusion Pilot Plant platform

SPARC is domestic burning plasma experiment using known science, but its context is new

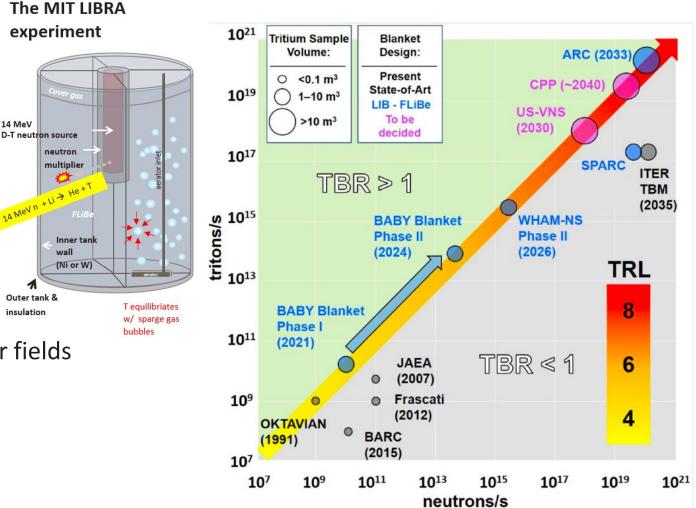
- Designed and built using a new PPP
- The pursuit of BP/net-energy science is a necessary but insufficient part of delivering fusion energy.
- SPARC evolved alongside the ARC pilot plant design to assure that they were both leveraged to accelerate the timeline
 - Parallel development
 - Technology development risk preferred to integrated plasma risk
 - With an unsentimental view of using the technology to deliver fusion energy

ARC – a platform for fusion energy development

- Only a few set boundary conditions
 - REBCO-based high B magnets \rightarrow ~JET size
 - Liquid immersion blanket \rightarrow neutron physics
 - Modular design \rightarrow replaceable thin VV/first wall
- Set by market: economics (\$/W) and need to have a flexible platform that can provide integrated answers to plant availability
- Highly flexible core plasma scenarios because high B allows for ops in huge parameter space...these are tools, not the reason to build ARC!
 - Standard H-mode, inductive
 - Non-inductive, higher H, high recirculating powe
 - Radiative L-mode, higher I_p (negative triangularity?)

The current ARC design point \rightarrow Market informed

- ARC is a class of machines driven by market needs
- Characteristics:
 - Nearly ignited
 - Pulsed with 30min on/1min off
 - Very similar to SPARC
 - Very far from plasma limits
 - P_{elect} ~200MWe
- Reference design is not overly sensitive to assumptions


Parameter	ARC V1	Parameter	ARC V1	4 -	
B ₀ (T)	11.5	Z _{eff}	1.5	3 -	
R ₀ (m)	3.45	P _{rad} (MW)	24	5	
a (m)	0.93	$< T_e > (keV)$	11.8	2 -	
ε	0.27	<n<sub>e> (10²⁰)</n<sub>	1.7	1 -	
V _p (m ³)	91	f _g	0.49	Ê.	
ĸa	1.60	β_{N}	1.4	(m) 2 (m)	
κ_{sep}	1.80	f _{bs}	0.10	-1-	
$\delta_{ ext{sep}}$	0.50	PB/R (MW	284	-2 -	
l _p (MA)	9.9	T/m)			
q*	3.05	Pulse Len.	~30 min	-3 -	
H _{98,y2}	1.15	$\Phi_{ ext{total}}$ (V-s)	125	-4 -	
Q	107			0	2
P _{fus} (MW)	521				F
P _{rf,coup} (MW)	4				

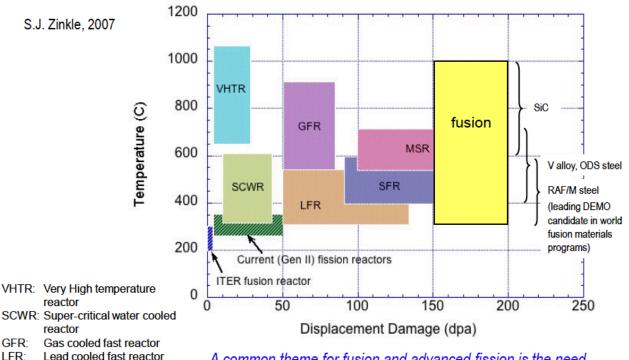
6

Leveraging technology innovations: liquid immersion blanket TRL can be greatly advanced without a tokamak!

14 MeV

- Proposed "mini" LIB blanket at MIT
- Significant milestones:
 - TBR>1 at increasing amounts of breeding
 - Tritium extraction at rep. rate •
 - Corrosion control •
 - FLIBE material handling and sourcing
- Collaboration opportunities outside usual fusion community expertise
 - FLiBe impurity control, purification
 - Active corrosion monitoring and control
 - MHD heat transfer coefficients of FLiBe under fields
 - Heat exchange materials, performance •
 - Tritium accountancy •

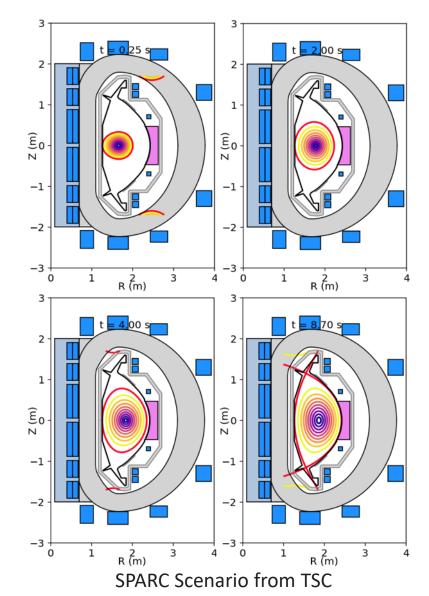
Materials strategy \rightarrow Use something that works today to start


SFR

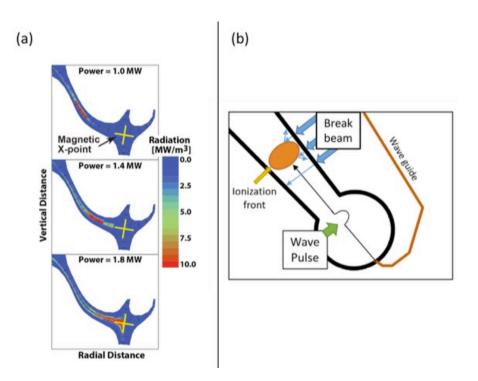
MSR[.]

Sodium cooled fast reactor

Molten salt cooled reactor


- ARC will have replaceable VV: materials don't need to last forever
- We will require only ~50 DPA lifetimes and 500 ppm of helium to start.
- Small volume ~few m³
- RAFM and D9 steels could build an ARC vacuum vessel today.
 - Advanced materials to improve economics e.g. higher T_{op}
- Materials roadmap instead of silver bullet: bootstrap, learn as we go

A common theme for fusion and advanced fission is the need to develop high-temperature, radiation resistant materials.


Physics \rightarrow Use SPARC to close key gaps

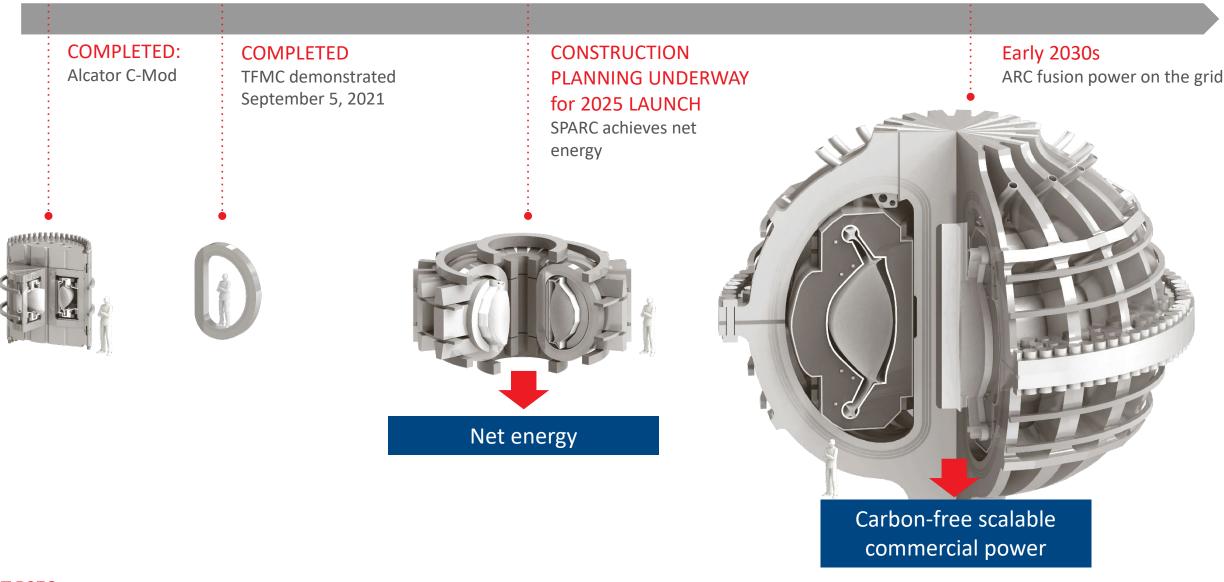
- SPARC physics basis published, refereed, conservative: discharge is ~non-dimensional match to JET.
- H-mode reference discharge has a wide operational window in temperature and density
- Operational point is far from density and pressure limits with reasonable safety factor
- ARC will have substantially similar physics
- Collaboration opportunities:
 - Modern tokamak scenario design tool
 - Divertor physics simulation
 - Disruptions and transients

Diagnostics -> Start with full set, then reduce

- Present-day tokamaks are generally very well diagnosed and have many observations with which to control the plasma.
- A power plant, on the other hand, will be constrained in diagnostic coverage, as many present-day diagnostics would not survive
- While SPARC will have the capability to install many diagnostics, it shall have the capability to prepare for ARC operation
- Collaboration opportunities:
 - Diagnostics survivability
 - Control systems modeling
 - Feedthrough designs

Some early scoping work already done for ARC [Kuang 2018]

Positioning to move to ARC ASAP after SPARC



- Performance de-risked using SPARC to optimize it
- Technologies de-risked using SPARC and other R&D
- Business development to find beachhead
- We'll have assembled the partners
- Manufacturing using our facilities

Set up to move to ARC construction immediately after SPARC demonstrated

Burning plasma science is a key part of the path to fusion energy having an impact on decarbonization

Thank you

www.psfc.mit.edu

www.cfs.energy

December 2021 44