First physics results from Wendelstein 7-X

Thomas Sunn Pedersen
for the W7-X Team

Professor of Physics and
Director of Stellarator Edge and Divertor Physics
Max-Planck-Institut für Plasmaphysik, Greifswald
• The entire W7-X Team
• In particular those contributing directly to the work highlighted in this presentation:
 • T. Szepesi, G. Kocsis, Wigner RCP, Hungary
 • G. Wurden, LANL
 • S. Lazerson, N. Pablant, PPPL
 • L. Stephey, T. Barbui, F. Effenberg, O. Schmitz, U Wisc. Madison
 • P. Traverso, U. Auburn

First physics results from W7-X
• Introducing the Wendelstein 7-X stellarator
• Time line and goals for operation phases 1.1, 1.2, and 2
• Some details about OP1.1
• OP1.1 results:
 • Flux surface measurements
 • First plasmas: Discharge development and collapse
 • Top performance discharges in He and H
 • Scrape-off layer physics
• Summary and conclusions
Advances in our understanding as well as in supercomputer power has allowed a comeback for the stellarator concept.
Design of magnetic field coils
Major milestones of the project Wendelstein 7-X

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministerial decision</td>
<td>1993</td>
</tr>
<tr>
<td>Official start of the project</td>
<td>1996</td>
</tr>
<tr>
<td>Start of construction</td>
<td>1997</td>
</tr>
<tr>
<td>Move into new building</td>
<td>2000</td>
</tr>
<tr>
<td>Termination of predecessor W7-AS</td>
<td>2002</td>
</tr>
<tr>
<td>Arrival of first magnet</td>
<td>2004</td>
</tr>
<tr>
<td>Start of magnet assembly</td>
<td>2005</td>
</tr>
<tr>
<td>New timeline agreed</td>
<td>2007</td>
</tr>
<tr>
<td>Arrival of the last magnet</td>
<td>2010</td>
</tr>
<tr>
<td>Magnet system complete</td>
<td>2013</td>
</tr>
<tr>
<td>Last weld seam on the vessels done</td>
<td>2013</td>
</tr>
<tr>
<td>Start commissioning</td>
<td>2014</td>
</tr>
<tr>
<td>Technically ready for plasma operation</td>
<td>07.2015</td>
</tr>
<tr>
<td>Start plasma operation</td>
<td>12.2015</td>
</tr>
</tbody>
</table>
Design study of a stellarator reactor

- 3 GW_{th} thermal power
- 44 m diameter
- 1000 m³ plasma volume
- 30,000 t total weight
Time-lapse movie of construction

First physics results from W7-X
Planning (status mid-2015)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Milestone Closure of Cryostat</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Device Commissioning</td>
<td>52 W</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Milestone 1st Plasma</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>OP1.1 (<1s 2MW)</td>
<td>13 W</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Milestone OP1.1 Completed</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>KiP2 Assembly</td>
<td>46 W</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Milestone KiP2 Complete</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OP1.2 (5-10s 8 MW)</td>
<td>29 W</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>OP1.2 (5-10s 8 MW)</td>
<td>29 W</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Milestone OP1.2 Completed</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>KiP3 Assembly</td>
<td>70 W</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Milestone KiP3 Complete</td>
<td>0 W</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Device Commissioning</td>
<td>20 W</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Milestone Start OP2</td>
<td>0 W</td>
<td></td>
</tr>
</tbody>
</table>

plasma commissioning

1st plasma w/o divertor

1st divertor plasmas

steady-state plasmas

diagnostics/control

First investigations

First physics results from W7-X
Updated planning

Technically ready for 1st plasmas in July 2015

device commissioning → test divertor assembly → HHF divertor assembly

<table>
<thead>
<tr>
<th>task</th>
<th>weeks 2014</th>
<th>weeks 2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestone Closure of Cryostat</td>
<td>0 W</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Commissioning</td>
<td>52 W</td>
<td>13 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone 1st Plasma</td>
<td>0 W</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP1.1 (<1s 2 MW)</td>
<td>13 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone OP1.1 Completed</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KiP2 Assembly</td>
<td>46 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone KiP2 Complete</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP1.2 (5-10s 8 MW)</td>
<td>29 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP1.2 (5-10s 8 MW)</td>
<td>29 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone OP1.2 Completed</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KiP3 Assembly</td>
<td>70 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone KiP3 Complete</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Commissioning</td>
<td>20 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone Start OP2</td>
<td>0 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

plasma commissioning
diagnostics/control
first investigations

1st plasma w/o divertor

1st divertor plasmas

steady-state plasmas 2020

Dec. 10, 2015

First physics results from W7-X
First Operation Phases (OP) in Figures

OP 1.1
2015-16
3 months
Pulse energy: $E_{\text{max}} \sim 2\text{MJ}$
Graphite limiters, uncooled
- $P_{\text{ECRH}} \sim 5\text{ MW}$
- 6 gyrotrons
- $T_{e NC} \sim 4\text{ keV}$
- $T_{i NC} \sim 1\text{ keV}$
- $n \sim 2 \times 10^{19} \text{ m}^{-3}$
- $<b_{NC}> \sim 1\%$

OP 1.2
2017
2*5 months
Pulse energy: $E_{\text{max}} \sim 80\text{ MJ}$
Graphite divertor, uncooled
- $P_{\text{ECRH}} \sim 8\text{ MW}$
- $P_{\text{NBI}}^H \sim 7\text{ MW}$
- $P_{\text{ICRH}} \sim 1.6\text{ MW}$
- $T_{e NC} \sim 5\text{ keV}$
- $T_{i NC} \sim 4\text{ keV}$
- $n \sim 1.6 \times 10^{20} \text{ m}^{-3}$
- $<b_{NC}> \sim 3\%$

OP 2
2020
Pulse energy up to $\sim 18\text{ GJ}$
- 10 MW for 30 min
- 20 MW for 10 s at a time
CFC water-cooled divertor
- $P_{\text{ECRH}} \sim 10\text{ MW}$
- $P_{\text{NBI}}^D \sim 10\text{ MW}$
- $P_{\text{ICRH}} \sim 4\text{ MW}$
- $P_{\text{tot}} < 20\text{ MW}$
- $T_{e NC} \sim 5\text{ keV}$
- $T_{i NC} \sim 5\text{ keV}$
- $n \sim 2.4 \times 10^{20} \text{ m}^{-3}$
- $<b_{NC}> \sim 5\%$

First physics results from W7-X
PFCs for first plasma operation (OP1.1)

- Wall protection (SS)
- Heat shields (CuCrZn heat sinks)
- Water-cooled (starting OP 1.2)
- No divertor in the first phase
- 5 graphite limiters at the inner wall
- Must intersect convective plasma heat loads
- Designed for >5*0.4 MJ=2MJ per pulse

First physics results from W7-X
Magnetic configuration for limiter operation

- Make sure limiter intersects >99% of the heat load: Vary iota using planar coils:
 - Avoid large islands at the edge
 - Avoid stochastic regions at the edge
 - Limit several cm of good flux surfaces
 - Robust against field errors (in particular 1/1)

\[I_{\text{planar}} = 0.23, \quad \iota_0 = 0.75, \quad \iota_a = 0.81 \]

\(I_{\text{planar}} = 0.13 \) chosen

First physics results from W7-X
FSM: Basic Concept

• Electron beam emitted parallel/antiparallel to magnetic field line
• Intersected in one cross-section by rod covered with a fluorescent powder
• Poincaré cross-section appears on time-integrated photograph

First physics results from W7-X
• Three manipulators designed, manufactured and tested
• Two manipulators installed (AEV10 & 30) for measurements in two different modules

First physics results from W7-X
A cut through a magnetic flux surface

First physics results from W7-X
First physics results from W7-X
In OP1.1 we have a slightly lower iota than the future “standard configuration”
 • The planer coils are hooked up to lower iota
We could not easily access a high iota configuration before OP1.1
Iota=0.5 is also resonant with n=1 field errors (iota=n/m=1/2), and can be accessed with the polarity used in OP1.1
Thus, an m=2 island should be measurable with FSM
Trim coils can be used to create well-defined n=1 error fields, since the intrinsic error is too small to be measured
 • Shadowing prevents us from measuring small islands
 • (First ten e-beam transits shown)
Success! $m/n=2/1$ island measured

2/1 island chain induced by trim coils set to produce $n=1$ error field

First physics results from W7-X
Island width scaling with trim coil current

- Scaling suggests an intrinsic 2/1 island with a width of about 4 cm is present.
- This island size is consistent with the estimated n=1 error originating from construction inaccuracies*: $B_{11}/B_0 \sim 2-3 \times 10^{-5}$

$$w = \sqrt{\frac{R o B_{mn}}{m B_o t'}} \hspace{1cm} B_{mn} \propto I_{trim}$$

*T. Andreeva et al., EPS 2012

*First physics results from W7-X
First Helium Plasmas
Observed with camera diagnostics

Early plasma 15.12.2016
First plasmas end in a radiation collapse

- Central ignition
- Expansion from inner to outer magnetic surfaces is slow due to good confinement
- Radiation/ionization layer defines the expanding edge
- Plasma acts as MW UV heater lamp
- UV photons hit the walls, impurities come off the walls
- Impurity radiation kills the plasma from the outside
First plasmas “100% edge cooling”

- For these plasmas, the limiters received essentially no convective heat flux
 - 0-2 degree temperature rise
 - Very low limiter Langmuir probe signals

- All the plasma energy was radiated away at the edge – no convective loading

- (Impurity radiation is too intense)
Right before switching from He to H plasmas, we achieved plasmas with lifetimes of 0.4-0.5 seconds (28.01.2016)
The plasma had prolonged contact with the limiters
Limiter temperature rose to over 300 C
Movie:
 • 100 Hz (10 ms) frame rate
 • Total movie 0.46 s real time

\[T_e \sim 8 \text{ keV} \]
\[T_i \sim 1.5 \text{ keV} \]
\[n_e \sim 3 \times 10^{19} \text{ m}^{-3} \]
Hydrogen Plasmas
High performance in H

• 2 MJ milestone reached on Thursday Feb 18, 2016!
• 1 second 2 MW reference discharge
• Look closely 1.52 (5.34 msec), 2.21 (744 msec) and 2.90 (944 msec)

• 100 Hz/ 10 msec frame rate
• Total movie 1.2 seconds real time

First physics results from W7-X

T. Szepesi, G. Koczis
• Since the limiters were not overheated even in 2 MJ discharges, 4 MJ per discharge was allowed during the last weeks of operation
• 6 second discharge shown (1 s 1MW, then 5 s 0.6 MW):

• Discharge terminates peacefully, as pre-programmed

First physics results from W7-X

T. Szepesi, G. Koczis
Core parameters and estimates of confinement times: Preliminary data!!!
Core profiles of n_e and T_e: Consistency check

Thomson scattering and ECE

![Graph comparing Thomson scattering and ECE](image1)

$\beta_e \approx 2.1\%$

ECE comparison
- For $\beta \leq 0.5\%$ there is a good agreement
- For higher β the difference between LFS ECE and HFS ECE becomes larger
- More careful mapping should be used

Thomson scattering and interferometry

![Graph comparing Thomson scattering and interferometry](image2)

Interferometer comparison
- In many cases TS and interferometer agree within 10%
- Sometimes there is a discrepancy
- No clear dependence on plasma parameters

First physics results from W7-X
Core transport: on- and off-axis heating

Two comparable, low power (0.6 MW), long-lived plasmas:
- On-axis ECRH
- Off-axis ECRH

Clear and expected response in Te profiles
Density does not hollow out (concern from neoclassical estimates)

Peaked profiles:
- Inward pinch?
- Core fueling (n_e low)
Limiter SOL physics

- As the walls progressively cleaned, and the pulses got longer, the plasmas started to touch the limiters
- Several hundred degrees of temperature rise during the longest plasma pulses
- Large I_{sat} values on Langmuir probes ($n \sim 2 \times 10^{19} \text{ m}^{-3}$)
- A real scrape-off layer has formed
- Is there anything interesting to be learned from a limiter SOL?
Why SOL and λ_q studies are important

- The width of the heat deposition region, λ_q, scales with $1/B_p$ in tokamaks, and NOT with machine size, leading to a prediction of $\lambda_q \leq 1$ mm for ITER and DEMO (problematic).

- Heuristic model:
 Goldston, Nuclear Fusion 52 013009 (2012)
 - $\lambda_q \sim L_c^* V_D$
 - In tokamaks, L is proportional to $1/B_p$ leading to B_p scaling
 - In a stellarator, L_c is not related to B_p but to the inclination of the divertor relative to the field lines
 - Limiter operation gives data points at $L_c \sim 30-80$ m
 - Divertor operation will give data at $L_c \sim 100-500$ m

First physics results from W7-X
Scrape-off layer physics with a limiter

Connection length is short compared to divertor phase, two distinct regions on limiter.

Cross field diffusion rate visibly affects heat load patterns:

\[D \text{ (m}^2\text{/s)} = \begin{cases} 0.5, & \text{connection length, m} \\ 1.0, & \text{80} \\ 2.0, & \text{60} \end{cases} \]

First physics results from W7-X
Edge Filaments
Fast movie “gas puff imaging”

- Superfast movie shows filamentary structures rotating
- 20 kHz<->50 µs per frame
- The counter-clockwise rotation is consistent with inward-pointing radial electric field
- “Ion root”
- As expected for low T_e plasma
- Reminiscent of tokamak “blob” visualizations using gas puff imaging.

T. Szepesi, G. Koczis, Wigner RCP, Hungary

First physics results from W7-X
Scrape-off Layer Physics with a Limiter

Standard limiter configuration
L_c variation on the limiter explained

First physics results from W7-X

Effenberg, O. Schmitz
Scrape-off layer physics with a limiter

High-res. IR camera view directly onto limiter in module 3

Cross field diffusion rate visibly affects heat load patterns

First physics results from W7-X

F. Effenberg, O. Schmitz
Scrape-off layer physics experiments using the trim coils
Trim coils

First physics results from W7-X
Heat load shifts upwards as the n= 1 perturbation trim coil currents with a maximum in Module 3, are increased (while holding the phasing fixed).

Green tile: center tile of the limiter

FLIR MIR camera
Scrape-off Layer Physics with a Limiter

Increased iota limiter configuration

First physics results from W7-X
Slightly increased iota

- $I_{planar} = 0.10, \nu_0 = 0.80, \nu_a = 0.89$

- 5/5 island chain still in SOL but closer

- Given the large radiated power, this was deemed safe (for the last two days of operation)
 - Limiter shadowing is different – different load patterns
 - 5/6 island chain is deeper in core region
 - Mirror term is larger
 - De-optimized neoclassical transport

First physics results from W7-X
Changing the heat flux pattern between standard original OP1.1 and increased-iota (index 13) configuration

EMC3-Eirene prediction: change in heat load pattern correlated to change in L_c footprint

IR observation shows a clear shift in heat load pattern due to iota variation
Summarizing...
At the end of OP1.1, ~30 diagnostic systems were operational

QMC: Correlation reflectometry	QRT-h: High-resolution H-alpha	QSV-f: fast video camera
QMJ: Single channel interferometer	QSZ: Z_{eff} single line of sight	QRT: Near Infrared limiter observation
QTB: Thomson scattering	QSS-f: Filterscope line of sight	QSR: Limiter observation: Hα
QME: ECE	Vis. spectroscopy	QRT-h: high-resolution infrared obs.
QSX: FZJ crystal spectrometer	QSD: HEXOS (broadband x-ray spectr)	QNC: neutron counters
QSW: US crystal spectrometer	QSB: bolometry	QSQ: therm. He-beam obs. systems
QXD: diamagnetic loops	QXP: pulse height analysis	CBD-v: NIR-video
QXR, QXO: Rogowski coils	QRP: limiter Langmuir probes	CBD-s: Sniffer probes
QXM: Mirnov coils	QRG: neutral gas pressure gauges	CBB: gyrotron power measurement
QXS: Saddle coils	QRG-p: Penning gauge	QSV: video diagnostic
QXE: flux surface measurements	QRN: multi-purpose manipulator	QSQ: thermal He, Ne, Ar, N, -beam gas boxes
Status end of OP1.1 (red bold font)

OP 1.1	Pulse energy: $E_{\text{max}} \sim 2$ MJ	$P_{\text{ECRH}} \sim 5$ MW	$T_e^{\text{NC}} \sim 4$ keV	8 keV
OP 1.2	E reached: 4 MJ	$P_{\text{ECRH}} \sim 8$ MW	$T_i^{\text{NC}} \sim 1$ keV	>2 keV
2015-16	Pulse length: 6 sec	$P_{\text{NBI}}^H \sim 7$ MW	$n \sim 2 \times 10^{19}$ m$^{-3}$	5×10^{19} m$^{-3}$
3 months	6 gyrotrons	$P_{\text{ICRH}} \sim 1.6$ MW	$<\beta_{\text{NC}}^+ \sim 1$%	$\beta_{\text{central}} > 2.5\%$
	6 gyrotrons in operation, 4.3 MW		$<\beta >$ to be calculated	
	Graphite limiters, uncooled			

OP 2	Pulse energy: $E_{\text{max}} \sim 18$ GJ	$P_{\text{ECRH}} \sim 10$ MW	$T_e^{\text{NC}} \sim 5$ keV	8 keV
2020	$=10$ MW for 30 minutes	$P_{\text{NBI}}^D \sim 10$ MW	$T_i^{\text{NC}} \sim 5$ keV	>2 keV
	20 MW for 10 seconds	$P_{\text{ICRH}} \sim 4$ MW	$n \sim 2.4 \times 10^{20}$ m$^{-3}$	5×10^{19} m$^{-3}$
	CFC water-cooled divertor	$P_{\text{tot}} < 20$ MW	$<\beta_{\text{NC}} >$ ~ 5%	$<\beta >$ to be calculated

First physics results from W7-X
Summary of other preliminary results

• Toroidal current measured (bootstrap and ECCD): up to 2 kA
• Confinement time of He in H plasmas ~ 5 seconds
• Confinement changes observed in power-step down experiments
• Electric field profiles measured
• SOL diffusion coefficients and λ_q studies started, $D \sim 0.5 \text{ m/s}^2$
• Successful ECRH wall-conditioning in He
• Efficient edge cooling also possible with targeted N injection
• Feed-forward density control successful
• On- and off-axis ECRH, heat pulse propagation studies performed
Conclusions

• Demonstrated good flux surfaces as expected, with error fields $\sim 10^{-5}$
• Managed to increase pulse lengths from initially 10 ms to 6 s
• As wall-conditioning improved, excellent plasma performance achieved:
 4 MJ: $T_e \sim 8$ keV, $T_i \sim 2.0$ keV, $n \sim 1$ to 5×10^{19} m$^{-3}$, $\beta_c \sim 2.5$
• Successfully demonstrated functioning of the trim coils
• Confirmed predicted limiter heat load patterns in two limiter configurations
• Many well-diagnosed plasmas made; detailed analysis in progress.